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Layer-by-layer ordering of ultrathin liquid crystal films
on the three-level Potts model
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Abstract. – The three-level Potts model with variable coupling strengths is proposed to
describe the newly observed smectic-A′ to smectic-A phase transition in free-standing liquid
crystal films. In a film of L molecular layers, the transition temperature for individual layers is
determined separately by the bifurcation point of the free energy in the variational cumulant
expansion (VCE), from which the heat capacity is also calculated analytically. By adjusting
the interlayer and intralayer coupling between nearest-neighboring molecules, it is shown that
the calculated heat capacity qualitatively reproduces the observed anomaly around transition
temperatures in experiments on free-standing 54COOBC films of two and more molecular layers.

The characteristic behavior of liquid crystals (LC) has been one of the most interesting
subjects of research in recent years. In particular, the free-standing LC film is perhaps the
most ideal object for the study of two-dimensional (2D) melting. Experimentally, the first
evidence of a “stacked” hexatic or hexatic-B (HexB) phase was observed in X-ray diffraction
from a 65OBC thick film [1] and the 2D hexatic phase was established in electron diffraction
from a two-layer free-standing film of a 65OBC mixture [2]. The X-ray diffraction study
reveals two types of ordering: the short-range in-plane positional correlation but long-range,
three-dimensional, six-fold bond-orientational order, and the local herring-bone order that
assumes three distinct directions. The existence of herring-bone order in the HexB phase is also
confirmed by electron diffraction studies [3]. Heat-capacity measurements and renormalization
group calculation of the Landau-Ginsberg-Wilson free-energy model show that the SmA-HexB
transition of 65OBC belongs to the universality class of the three-level Potts model [4, 5]. A
series of simultaneous heat capacity and optical reflectivity measurements on free-standing
nmOBC [6, 7] and 54COOBC [8] films of two and more molecular layers reveal a layer-by-
layer ordering phenomenon. It is demonstrated that as the temperature decreases, the surface
layer orders at a higher temperature than the interior one due to the surface tension as well as
the highly anisotropic nature of smectic phases [9]. As a matter of fact, a qualitatively similar
melting process behavior was also observed in other LC films [10–15]. These experiments show
clearly that the LC films are not really 2D systems no matter how thin they are. Presumably
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the monolayer film has a slightly higher transition temperature than a two-layer film. It is the
interlayer coupling that results in the peculiar behavior of layer-by-layer melting. There is no
theory, to our knowledge, that predicts the so-called thermal anomaly for LC films of finite
thickness, although numerical attempts to account for the unusual behavior have been made
either by analyses on the 2D Potts model [4] or by Monte Carlo simulation in 2D lattices [16].

Very recently, a new phase SmA′ was observed in a series of experiments. It represents
a phase with a higher degree of in-plane positional correlations than that in an ordinary
liquid and similar to that found in a hexatic phase, but it lacks long-range bond-orientational
order [17]. This seems to establish the sequence of phase transitions CryB-HexB-SmA′-SmA
for the melting process of a two-layer film [18, 19]. The electron diffraction pattern at the
transition temperature 66.3 ◦C shows no long-range bond-orientational order, which appears
after the transition to HexB phase at 63.0 ◦C. Since no change in Cp is observed in the
simultaneous high-resolution Cp and optical reflectivity measurements, SmA′-HexB and HexB-
CryB are regarded as possible candidates for the phase transition of Kosterlitz and Thouless
(KT) type. More data indicate that a similar situation exists for films of more than two
layers, at least for the first few layers, implying that the heat capacity found for films of
various thickness corresponds to the SmA-SmA′ phase transition [20].

Since the interlayer coupling is very weak compared with the intralayer coupling, it is
plausible to approximate the stacked hexatic LC films as a hexagonal close-packed (hcp)
structure. Hence we propose to describe the hcp structure by the three-level Potts model.
This is all right as long as there exists a weak herring-bone order in 54COOBC [17]. Every
molecule in the hcp structure has twelve nearest neighbors (nn) including six in-plane plus
three on each side of the adjacent planes. The theory of variational cumulant expansion (VCE)
was developed recently to determine the transition temperature of thin magnetic films [21].
It is not a mean-field approach but the first-order approximation yields the mean-field result.
The advantage of the VCE is that the transition temperature can be calculated analytically
as a function of the number of molecular layers in the film. It is shown that the convergence
of the expansion is rather fast [22, 23]. It has also been demonstrated that a microscopic
calculation by the VCE theory on the Ising model with variable exchange coupling constants
is able to account for the transition temperatures measured on ultrathin Ni(001) films in
the region of dimensionality cross-over [24]. The three-level Potts model, on the other hand,
predicts only first-order transitions except for a 2D monolayer in which the phase transition is
second order [25]. Since a single-layer film is in practice unstable and ruptures quickly, there
is no measurement available. Therefore we limit our discussion in the following to films of two
and more molecular layers.

We consider the Hamiltonian

H = −
∑
〈i,j〉

Jijδ(σi, σj) , (1)

where σi and σj are parameters characterizing the herring-bone order. They can take the
relative orientations 0◦, 120◦, 240◦ between the two molecules viewed from the top, and are
labeled by 0, 1 and 2, respectively. The symbol 〈i, j〉 means summing only over the nn and
the δ-function is defined as

δ(σi, σj) =

{
1, i = j ,
0, i �= j . (2)

The exchange coupling constant Jij is allowed to vary, depending upon the relative positions
of the nearest-neighboring molecules. For instance, the intralayer and interlayer coupling may
be different from one another.
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The action of the system is

S = −H/kBT =
∑
〈i,j〉

βijδ(σi, σj) , (3)

where βij = Jij/kBT . For the trial action, we assume

S0 = ξ0δ(σ1, 0) + ξ1δ(σ1, 1) + ξ2δ(σ1, 2) , (4)

where we have defined ξ0 = 1 + 2ξ, ξ1 = ξ2 = 1− ξ with the variational parameter ξ. As we
shall see later, ξ plays the role of the order parameter. It is easily seen from (4) that ξ0, ξ1
and ξ2 are proportional to the probability of finding the system in the state σj = 0, 1 and 2,
respectively. The 6-fold symmetry implies that ξ1 = ξ2.

The partition function of the system is

Z = e−W =
∑

eS = Z0〈eS−S0〉0 , (5a)

Z0 = e−W0 =
∑

eS0 =
∏
[eξ0 + eξ1 + eξ2 ] = [eξ0 + 2eξ1 ]N , (5b)

where W0 and Z0 are, respectively, the free energy and partition function for the correspond-
ing non-interacting system, and the Boltzmann ensemble average 〈A〉0 = 1

Z0

∑
AeS0 of a

quantity A.
The free energy of the system is found from (5) as

W ≈W0 −
m∑

n=1

1
n!
〈(S − S0)n〉c =Weff,m . (6)

In the second step of (6), we have defined the cumulant expansion to m-th order approxi-
mation. The cumulant average 〈A〉c is related to 〈A〉0 by simply comparing the two series
in (6).

Up to this point, the theory is general. Let us now consider a film of L molecular layers
labeled by l. For simplicity, we assume the uniform intralayer coupling Jij = J for 1 < l < L.
Because of the surface tension, a slightly stronger coupling for pairs in the surface layer is
assumed. On the other hand, we assume a much weaker coupling for interlayer nn pairs as the
average interlayer distance is about a molecular length or ∼ 25 Å, which is much larger than
the mean intermolecular distance in the layer. The weak nature of the interlayer coupling
has in fact been found experimentally from measurements of the thickness dependence of the
transition temperatures [4, 5]. Thus, we take the intralayer coupling Jij = aJ with a > 1 for
l = 1, L and Jij = bJ with b� 1 for interlayer coupling. The free energy up to the first order
is, according to (6),

Weff,1 = − ln(e3ξ + 2) + 3ξy − β

2
D1(l, L, a, b)V2 . (7)

The structure factor D1(l, L, a, b) depends on the lattice structure and for hcp is given by

D1(l, L, a, b) =

{
6a+ 3b for l = 1, L ,
6 + 6b for l = 2 ≤ l ≤ L− 1 . (8)

The function Vm for m-th order with m ≥ 2 is defined by

Vm = ym + (1− y)m/2m−1 , (9a)
y = e3ξ/(e3ξ − 2) . (9b)
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Fig. 1 Fig. 2

Fig. 1 – Trace of extrema and analytic properties of the free energy as projected on the ξτ -plane.

Fig. 2 – Heat capacity at constant volume calculated for LC films of 2 ≤ L ≤ 6 are plotted as solid
lines. The numeral indicates the number of molecular layers in the film. The high-temperature peak
represents the transition for the surfaces or l = 1, L. The middle peak indicates the transition for
the next-to-surface layers, and the peak at the low-temperature end stands for the interior transition.
The shaded thick line represents experimental data measured at constant pressure on LC films of
54COOBC.

The variational parameter ξ = ξ(T ) is determined by the condition of minimum free energy,
namely, δW1/δξ = 0 which yields

3ξ − 1
2
βD1(l, L, a, b)(3y − 1) = 0 . (10)

Equation (10) is a transcendental equation which, for given values of a and b, has in general
different solutions in different temperature ranges. Let us now examine the analytic properties
of these solutions. As an example, we consider the particular case of L = 2, and the basic
feature remains the same for other cases. The function ξ(T ) that satisfies (10) is illustrated
in fig. 1. It has only one solution with ξ = 0 in the region τ > τA, where τ = kBT/J .
This solution corresponds to a minimumW1 as is seen from the second-order variation. When
τ < τA, there are three solutions for each τ , depending on ξ. It is easy to show that the solution
corresponds to minimum W1 for ξ > ξA′ along A′C′B′D′, for ξ = 0 along ACB and for ξ < ξB
along BD. On the other hand, the solution is a maximum for ξB < ξ < ξA′ along the curve
A′B and for ξ = 0 along the straight line B0. Our numerical work indicates further that W1

along AC is lower than that along A′C′, while it takes the same value at C and C′. When the
temperature decreases, the system follows the route specified by ξ = 0 till τC, it jumps to C′

with a change in its internal energy. Hence ξ has the characteristics of the order parameter
which changes abruptly at C from zero to ξC′ . Thus we expect a phase transition of the first
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order at τC. After this transition, the system remains in the upper branch C′B′ because of
the minimum free energy. It cannot reach B as the free energy is maximum along A′B. It is
important to emphasize once more that for a single molecular layer, the 2D three-level Potts
model predicts a second-order phase transition independent of other parameters.

To find the transition temperature tom-th order, we start with the calculation of moments
(S−S0) up tom-th order from which the cumulants are found by comparing the corresponding
terms of the two series in (6). The evaluation of higher-order cumulants involves summing over
graphs that are topologically equivalent. With the variable coupling, this may be tedious and
usually results in cumbersome expressions. Here we just outline the second-order calculation
as an illustration. Higher-order calculations can be carried out in a similar fashion.

Three cumulants are involved in the second-order calculation, namely,

〈S2
0〉c = 9ξ2(y − y2) , (11a)

〈SS0〉c = ξ
δ

δξ
〈S〉c (11b)

and

〈S2〉c = β2

[
1
2
D21(l, L, a, b)(V2 − V1)2 +D22(l, L, a, b)(B3 − V2)2

]
. (11c)

Substituting (11) into (6), we find the second-order free energy

Veff,2 = − ln(e3ξ + 2) + 3ξy − β

2
D1(l, L, a, b)V2 − 9

2
ξ2(y − y2) + ξ

δ

δξ
〈S〉c −

−β
2

2

[
1
2
D21(l, L, a, b)(V2 − V1)2 +D22(l, L, a, b)(B3 − V2)2

]
, (12)

where V2 is given by (9a) for m = 2. The structure factors D21 and D22 are defined through∑
〈i,j〉

β2
ij = β2D21 , (13a)

∑
〈i,j,k〉

βijβjk = β2D22 , (13b)

in which one has to evaluate the sum over all nearest neighbors j of i on the l-th layer of
the film. The free energy Veff,2 is minimized to determine the variational parameter ξ =
ξ(T ). We obtain, by requiring Weff,2(ξ = 0) = Weff,2(ξ = ξ(T )), the transition temperature
T

(2)
c (l, L, a, b) to the second order in VCE. The relative coupling strengths a and b are then
fixed by fitting the data.

After the transition temperatures are determined, we can proceed to calculate the heat
capacity. While the heat capacity is measured at constant pressure, we can only calculate
the heat capacity at constant volume Cv from the free energy. The difference is not expected
to have any significant influence on the qualitative behavior. Since the phase transition in
the film takes place layer-by-layer, we have to calculate the specific heat for every layer l in a
sample of L-layer film. The calculation is again tedious and here we just outline the procedure.
For the surface, l = 1, we have Tc(l = 1, L). When T > Tc(l = 1, L), ξ = 0, then the internal
energy U per site is given by

U = ∂W/∂β (14a)
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and the corresponding heat capacity is

Cv = −kBβ2(∂U/∂β) . (14b)

When T < Tc(l = 1, L), the free energy depends on both ξ and β which are related by (10).
As a consequence, we have

U1 =
∂W

∂β
+
∂W

∂ξ

∂ξ

∂β
, T < Tc , (15)

Cv(l = 1) = −kBβ2

(
∂U1

∂β
+
∂U1

∂ξ

∂ξ

∂β

)
, T < Tc . (16)

It is noted that the internal energy changes abruptly at Tc, implying the first-order phase
transition of the system. The same procedure is repeated for the second and third layer with
l = 2 and L− 1. Of course, both Tc and the structure factor D depend explicitly on l.

We now present the transition temperature and heat capacity for LC films of 2 ≤ L ≤ 6
obtained from the third-order VCE of the free energy. This is sufficient because the conver-
gence of VCE is fast as is illustrated in refs. [21–23]. For a film of given L, the transition
temperature T (3)

c (l, L, a, b) is computed for every molecular layer l. It is numerically verified
that the reflection symmetry is preserved. In other words, the transition temperature is the
same for l = 1, L; l = 2, L− 1 and so on. Since what we have found is Cv for each site, the
total heat capacity for a film of five layers, say, is given by

Cv(L = 5) = N [2Cv(L = 5, l = 1) + 2Cv(L = 5, l = 2) + Cv(L = 5, l = 3)] . (17)

Because the coupling constant J is not known, we normalize our results in such a way that the
surface Tc of a 6-layer film is taken to be unity, namely, τc = kBTc(l = 1, L = 6, a, b)/J = 1.
The relative coupling parameters a, b are determined by fitting the three Tc values with
measurements after setting the surface Tc of the 6-layer film equal to the corresponding ex-
perimental value. The best fitting yields a = 1.1 and b = 0.09. The heat capacity is still in
arbitrary units. In order to compare with data, we require that the heat capacity for a 6-layer
film at 65 ◦C matches the experimental point [26]. This is because the heat capacity is known
more accurately at 65 ◦C than at Tc. There is no other adjustment in the calculation. In
fig. 2, the heat capacity calculated as a function of temperature for films of various thickness
is compared with recent experiments. Theoretical results are represented by solid lines and
experimental data by a shaded thick line. It is seen that the transition temperatures for each
film agree quite well with measurements.

It is most interesting to note that the layer-by-layer ordering phenomenon is in agreement
with experimental observations [9]. We have also calculated Cv for a seven-layer film, and
found that it peaks at practically the same temperature for l = 3, 4 and 5. It is thus reasonable
to expect that all interior layers order at the same temperature. More explicit calculation
for thicker films requires higher-order VCE of the free energy and hence much more labor,
but we do not expect any qualitative change. These results suggest that the SmA′-SmA
transition [27], which is responsible for the layer-by-layer melting, observed in quasi–two-
dimensional LC films can be qualitatively understood by the three-level Potts model although
it is not predicted by the strict 2D theory of topological order. The Potts model is not
two-dimensional, however, it actually has interlayer coupling.

∗ ∗ ∗
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