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Kosterlitz-Thouless-Type Metal-Insulator Transition of a 2D Electron Gas
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We study the localization property of a two-dimensional noninteracting electron gas in the presence of
a random magnetic field. The localization length is directly calculated using a transfer matrix technique
and finite size scaling analysis. We show strong numerical evidence that the system undergoes a
disorder-driven Kosterlitz-Thouless-type metal-insulator transition. We develop a mean field theory
which maps the random field system into a two-dimensiofigdlmodel. The vortex and antivortex
excitations in theXY model correspond to two different kinds of magnetic domains in the random field
system. [S0031-9007(98)05776-7]

PACS numbers: 71.30.+h, 75.10.Jm

There has been a long lasting interest in understangsrevious numerical studies can be summarized into the
ing the localization problem in two-dimensional (2D) sys- following three classes: (i) There exists a MIT with scal-
tems. According to the scaling theory of localization [1], ing behavior on both metal and insulator sides [15,18],
all states in a 2D system are localized if only scalar ran{ii) there exists a MIT; however, the scaling curve is found
dom potential is present. However, in the presence of anly on the insulator side [7,8,13], and (iii) all states are
strong perpendicular magnetic field, where the time relocalized [9,10]. On the analytic side, the result is also
versal symmetry is broken, extended states appear in theconclusive. According to the conventional scaling the-
center of disorder-broadened Landau bands and give risgy of localization, the random flux system belongs to
to the integer quantum Hall effect (QHE) [2]. the unitary ensemble, which is described by a nonlinear

Recently, Halperin, Lee, and Read [3] and Kalmeyersigma model with unitary symmetry [19]. Since there
and Zhang [4] developed an effective Chern-Simons fields no net magnetic field, the topological term of the uni-
theory to understand electronic properties of the fractionalorm, magnetic field is absent. Perturbative renormaliza-
QHE systems. In their theory the quasiparticles ardion group calculations show that the scaling functj@n
weakly interacting composite fermions [5] which can befunction is always negative; thus, all states are localized
constructed by attaching an even number of flux quant§l9]. Recently, Zhang and Arovas [11] argued, based on
to electrons under a Chern-Simons transformation. Ira field theory study of a nonlinear sigma model, that there
this simple picture, the fractional QHE can be mappeds a term describing the long-ranged interaction between
into the integer QHE for the composite fermion systemthe topological densities and this new term could lead to
subject to an effective magnetic field [5]. At the filing a Kosterlitz-Thouless- (KT) type phase transition from
factor vy = % although the effective magnetic fiel* localized to extended states. However, another similar
vanishes, composite fermions are subject to the randoifield theory study still concludes that all states are local-
fluctuations of the gauge field induced by the ordinaryized [12].
impurities [3,4]. Thus, it is important to study the In this paper, we study the localization property of 2D
localization properties of noninteracting charged particlelectron gas in the presence of a random magnetic field
in the presence of a random magnetic field to understandith zero mean at zero temperature. The localization
the half-filling system. The problem of charged patrticleslength is directly calculated by using a transfer matrix
moving in a random magnetic field is also relevant to theiechnique and finite size scaling analysis. We show, for
theoretical studies of higll, models where the gauge the first time, strong numerical evidence that the system
field fluctuations play an important role [6]. undergoes a disorder driven KT-type metal-insulator tran-

There have been many studies trying to understand thgtion. This implies that thg8 function is always zero on
localization problem of noninteracting particles in a ran-the metallic side. Our numerical results also shed light
dom magnetic field with zero mean [7—-18]. However, theon why previous numerical calculations yielded conflict
main issue, namely, whether there is metal-insulator tranresults. Furthermore, we develop a mean field theory
sition (MIT), remains controversial. Conclusions from which maps the random field system into a X0 model.
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The vortex and antivortex excitations in tB& model (a) $.=0.5, E=0.0
correspond to two different kinds of magnetic domains in 20 . T ,
the random field system.

We model our 2D system in a very long strip geometry
of a finite width M with periodic boundary condition
along the width direction. We use a square lattice model 2.0
with nearest neighbor hopping. The disorder potential
is modeled by the on-site white-noise potentigl, (i
and m denote column and chain indices, respectively)
ranging from—W /2 to W/2. A random magnetic field
is introduced by varying the flux in each lattice plaquette .
uniformly between—¢, and ¢, in units of ¢y = hc/e, 00 40 80
the magnetic flux quantum. The Hamiltonian of this 0.02 s ! !
system can be written as 0.0 2.0 4.0 6.0 8.0

M w
H = Z Z WimC o Cim
i m=1 (b) ¢'r‘:0'25’ F=0.0
70 T T T

N/ M

0.2

+ Z [tim;jnc;ncjn + tifm;jncj;cim]’ (1)
(imsjn)

where (im; jn) indicates the nearest neighbors on the
lattice. The amplitude of the hopping term is chosen
as the unit of energy. The only effect of the random
magnetic field is on the phase factor of the intracolumn
(interchain) hopping term. Using a standard iteration
algorithm, we can calculate the localization length at

A/ M

0.1F « 10 S 0%%% .

finite width M [20]. We use the standard one-parameter 1.0 0.01

finite-size scaling analysis to obtain the thermodynamic ro pe 20 107 ”’;;/5"0 10°
localization length¢ [20]. In our numerical calculation, 0.01 w . :

we choose the sample length to be ové’ so that 0.0 2.0 4.0 6.0 8.0
the self-averaging effect automatically takes care of the w

ensemble statistical fluctuations. FIG. 1. (@) Ay/M as function of disorder strengti with

We now discuss our numerical results in variousmagnitude of random magnetic field, = 0.5 and energy at
situations and their implications. The purpose of Fig. 1(ajpand centeE = Ofor o: M = 4,%: M = 8, ¢: M = 16, and
is to show the finite-size effect. Presented in Fig. 1(a) is?i 1‘;1 = 3fzd‘ 'niet&ngfrmog’?"an?‘if |0ia|;32a£ign (lbe)llg&’f)ﬁs

i Tal i i unction ot aisorde optainea 1ro = 4, o, . M
wi?jt;at]t[) 3‘;:;?;? J%%?gzewocvilﬁn%;%Mmfgmti dsg s(t)?n; as function of disorder strength’ with ¢, = 0.25 andE = 0
. . for o: M =16, *: M =32, ¢: M =48, A: M = 64, and

random fieldg, = 0.5. Energy is set at the band center 3. p7 — 128. Left inset: Fit the thermodynamic localization
with E = 0. Different curves are for different system length & with the KT transition. Symbols are numerical data.
widths 0: M = 4,%: M = 8,0: M = 16,andA: M = Right inset: Scaling function using the data from (b).
32). If only curves for the smaller sizeds = 4,8, 16)
are considered, they cross Bt ~ 4. From those data are less than 0.01 which is smaller than symbol sizes.
with M = 4, 8, 16, one can obtain two nice scaling The error bars are estimated from the last 500 iteration
curves as shown in the inset of Fig. 1(a). Thus, onesteps. The striking difference with Fig. 1(a) is that all
would conclude that there is a transition from localizedcurves merge together fot¥ < W, ~ 4. Itis well known
to extended states arouril. ~ 4 and both sides have from the finite-size scaling studies of phase transition
scaling behavior as in a 3D MIT [21]. However, the datathat all curves for different sizes should cross at a
for M = 32 are inconsistent with the above conclusion.single point (critical point) for a conventional continuous
The data forM = 16 and M = 32 merge together when transition [22]. Two examples for such a transition in the
W < W, ~ 4, instead of crossing. This plot shows that localization problem are the three-dimensional Anderson
there is a severe finite-size effect faf < 16. This model [21] and 2D case with spin-orbital interaction
might explain the result of two branches of scaling curve[23]. However, Fig. 1(b) is quite different from the
obtained in the previous studies where omly<< 16 sizes  conventional transition in the sense that there is no single
have been calculated [15,18]. crossing point, but all curves merge togetheror< w..

In Fig. 1(b) we plotAy /M for ¢, = 025 andE =  This shows that there is a line of critical points for
0 with larger system sizedf = 16, 32, 48, 64, and W < W,, indicating that the system undergoes a disorder
128. The error bars for all the data points i3;/M  driven Kosterlitz-Thouless transition [22]. We have done
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a calculation [24] ofAy /M without a random field. In N=1, ¢= 1/7
that case, we find, within numerical fluctuations, that 20 . . .
the critical valueW, = 0 whereas a finiteW, is found

in Fig. 1(b). Figure 1(b) might also answer why some
numerical studies [9] conclude that all states are localized, LN

since those authors were looking for the crossing of 2.0
Ay /M as the evidence of a MIT. § io* 3
One unique feature about the KT transition is that 3 o

the localization lengthé (or correlation length) is of 02k~ )
exponential form on the localized side. In the left inset ’

of Fig. 1(b), we plot¢ for ¢, = 0.25 andE = 0. (The 1.0
results are similar for other values of, and E.)) We 00 40 80

fit the data foré with & « expla//W — W, ), typical 0.02 . .
for the KT transition. We findW, = 3.26 and a = 0.0 2.0 4.0 6.0 8.0
18.1 = 0.1. The fitting is quite accurate, which supports w

the notion that the transition belongs to the KT-type. FIG. 2. A,/M as a function of disorder strengti with a

We should warn readers that one has to treat the smalhitorm perpendicular magnetic field. The field is set such
W data with extreme caution because the localizationhat there are seven Landau bands and energy is at the band

length ¢ grows exponentially with square of mean-free center for thev = 1 Landau band.o: M =4, %: M = 8§, ¢:
path [12,25]. Wher¢ is much larger than the widthy, M = 16, andA: M = 32. Inset: Thermodynamic localization
the validity of the transfer matrix method we were using'€"9th¢ as a function of disordei’.

is in question [21]. This might also explain the large , _ + o 4 v
fluctuations in Fig. 1(b) at smaW. However, using only ; ;C/ cjImin(z; = z), 2 =X+ iy ()
reliable data for largév we can still conclude that there Unde th'l ¢ formation. Eq. (1) i ed to :
exists a finiteW, below which¢ diverges. Hgmilrtonilzn ransformation, Eq. (1) is mapp aspin

In Fig. 2 we show further numerical support for MIT

in a random field system. This support comes from H = iy ot i(0:—0,) o
X . . . . = ZZ e' S eTI S,

comparison with 2D electron gas in a uniform magnetic o /
field. Itis well known that there is an extended state at the
center of each Landau level [26]. As disorder increases, + Zw‘,‘(Sj’ + 1/2) + c.c., ()]
the extended state changes over to a localized one [27]. In J
Fig. 2 we plotAy /M as a function of disorder strengi  where the random phaseb;; is due to the random
with a uniform perpendicular magnetic field. The field is magnetic field and the summation is restricted to the
set such that there are seven Landau bands, and energynisarest neighbors. We make the MF approximation in
at the band center for th€ = 1 Landau band. Figure 2 the phase factof;: ¢/ c¢; — {(c; ¢;). This approximation
shows similar behavior ok, /M as in Fig. 1(b), namely, is expected to be accurate under three conditions: (i) in
all curves merge together f&¥ < W, = 5. Those states the presence of random phage, such that Aharonov-

with W < W, are extended. Bohm phase is not crucial, (i) for weak disordey — 0,

We have carried out numerical calculations for many
points on theg,-W, plane for the random field problem 0.5
with E = 0 and E = 0.5 and find similar behavior in '
Am/M for both energies. Presented in Fig. 3 is the

. ; ; 0.4+ .

resulting phase boundary separating the metallic anc
insulator regime. The phase diagram is determined by the
points when those lines ofy, /M for different M merge 0.3r 5
together. The error bar i, is 0.5 which is determined &
by the spacing we choos®. The states on the left of 0.2+ -
each curve are extended.

The question remains: Why is there a KT transition
in a random field system? To answer this question we 0.11 )
have developed a mean field (MF) theory which maps
the system onto a random pha%& model. Under a 0.0
2D Wigner-Jordan transformation [28], one can relate a 0.0 2.0 4.0 6.0
particle creation operator with a spin operator for the We
spin1/2 system: . - FIG. 3. Phase diagram on thi.-W plane. The filled circles

cj = e' 'S, (2)  are forE = 0.5; the opened ones are fé = 0.0. The states

where on the left of each curve are extended.
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