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We study the localization property of a two-dimensional noninteracting electron gas in the presence
a random magnetic field. The localization length is directly calculated using a transfer matrix techniq
and finite size scaling analysis. We show strong numerical evidence that the system undergoe
disorder-driven Kosterlitz-Thouless-type metal-insulator transition. We develop a mean field theo
which maps the random field system into a two-dimensionalXY model. The vortex and antivortex
excitations in theXY model correspond to two different kinds of magnetic domains in the random field
system. [S0031-9007(98)05776-7]
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There has been a long lasting interest in understa
ing the localization problem in two-dimensional (2D) sys
tems. According to the scaling theory of localization [1
all states in a 2D system are localized if only scalar ra
dom potential is present. However, in the presence o
strong perpendicular magnetic field, where the time r
versal symmetry is broken, extended states appear in
center of disorder-broadened Landau bands and give
to the integer quantum Hall effect (QHE) [2].

Recently, Halperin, Lee, and Read [3] and Kalmey
and Zhang [4] developed an effective Chern-Simons fie
theory to understand electronic properties of the fraction
QHE systems. In their theory the quasiparticles a
weakly interacting composite fermions [5] which can b
constructed by attaching an even number of flux qua
to electrons under a Chern-Simons transformation.
this simple picture, the fractional QHE can be mapp
into the integer QHE for the composite fermion syste
subject to an effective magnetic field [5]. At the filling
factor nf ­ 1

2 , although the effective magnetic fieldBp

vanishes, composite fermions are subject to the rand
fluctuations of the gauge field induced by the ordina
impurities [3,4]. Thus, it is important to study the
localization properties of noninteracting charged particl
in the presence of a random magnetic field to understa
the half-filling system. The problem of charged particle
moving in a random magnetic field is also relevant to t
theoretical studies of highTc models where the gauge
field fluctuations play an important role [6].

There have been many studies trying to understand
localization problem of noninteracting particles in a ra
dom magnetic field with zero mean [7–18]. However, th
main issue, namely, whether there is metal-insulator tra
sition (MIT), remains controversial. Conclusions from
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previous numerical studies can be summarized into t
following three classes: (i) There exists a MIT with sca
ing behavior on both metal and insulator sides [15,18
(ii) there exists a MIT; however, the scaling curve is foun
only on the insulator side [7,8,13], and (iii) all states a
localized [9,10]. On the analytic side, the result is als
inconclusive. According to the conventional scaling th
ory of localization, the random flux system belongs
the unitary ensemble, which is described by a nonline
sigma model with unitary symmetry [19]. Since ther
is no net magnetic field, the topological term of the un
form, magnetic field is absent. Perturbative renormaliz
tion group calculations show that the scaling functionb

function is always negative; thus, all states are localiz
[19]. Recently, Zhang and Arovas [11] argued, based
a field theory study of a nonlinear sigma model, that the
is a term describing the long-ranged interaction betwe
the topological densities and this new term could lead
a Kosterlitz-Thouless- (KT) type phase transition from
localized to extended states. However, another simi
field theory study still concludes that all states are loca
ized [12].

In this paper, we study the localization property of 2
electron gas in the presence of a random magnetic fi
with zero mean at zero temperature. The localizati
length is directly calculated by using a transfer matr
technique and finite size scaling analysis. We show, f
the first time, strong numerical evidence that the syste
undergoes a disorder driven KT-type metal-insulator tra
sition. This implies that theb function is always zero on
the metallic side. Our numerical results also shed lig
on why previous numerical calculations yielded conflic
results. Furthermore, we develop a mean field theo
which maps the random field system into a 2DXY model.
© 1998 The American Physical Society 3563
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The vortex and antivortex excitations in theXY model
correspond to two different kinds of magnetic domains
the random field system.

We model our 2D system in a very long strip geomet
of a finite width M with periodic boundary condition
along the width direction. We use a square lattice mod
with nearest neighbor hopping. The disorder potent
is modeled by the on-site white-noise potentialwim (i
and m denote column and chain indices, respectivel
ranging from2Wy2 to Wy2. A random magnetic field
is introduced by varying the flux in each lattice plaquet
uniformly between2fr and fr in units of f0 ­ hcye,
the magnetic flux quantum. The Hamiltonian of thi
system can be written as

H ­
X

i

MX
m­1

wimc1
imcim

1
X

kim;jnl
ftim;jnc1

imcjn 1 t
y
im;jnc1

jncimg , (1)

where kim; jnl indicates the nearest neighbors on th
lattice. The amplitude of the hopping term is chose
as the unit of energy. The only effect of the rando
magnetic field is on the phase factor of the intracolum
(interchain) hopping term. Using a standard iteratio
algorithm, we can calculate the localization lengthlM at
finite width M [20]. We use the standard one-paramet
finite-size scaling analysis to obtain the thermodynam
localization lengthj [20]. In our numerical calculation,
we choose the sample length to be over105 so that
the self-averaging effect automatically takes care of t
ensemble statistical fluctuations.

We now discuss our numerical results in variou
situations and their implications. The purpose of Fig. 1(
is to show the finite-size effect. Presented in Fig. 1(a)
the ratio of finite localization lengthlM to the system
width M versus disorderW with the magnitude of a
random fieldfr ­ 0.5. Energy is set at the band cente
with E ­ 0. Different curves are for different system
widths (±: M ­ 4, p : M ­ 8, ¶ : M ­ 16, andD : M ­
32). If only curves for the smaller sizessM ­ 4, 8, 16d
are considered, they cross atW , 4. From those data
with M ­ 4, 8, 16, one can obtain two nice scalin
curves as shown in the inset of Fig. 1(a). Thus, o
would conclude that there is a transition from localize
to extended states aroundWc , 4 and both sides have
scaling behavior as in a 3D MIT [21]. However, the dat
for M ­ 32 are inconsistent with the above conclusion
The data forM ­ 16 andM ­ 32 merge together when
W , Wc , 4, instead of crossing. This plot shows tha
there is a severe finite-size effect forM , 16. This
might explain the result of two branches of scaling curv
obtained in the previous studies where onlyM , 16 sizes
have been calculated [15,18].

In Fig. 1(b) we plotlMyM for fr ­ 0.25 and E ­
0 with larger system sizesM ­ 16, 32, 48, 64, and
128. The error bars for all the data points inlMyM
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FIG. 1. (a) lMyM as function of disorder strengthW with
magnitude of random magnetic fieldfr ­ 0.5 and energy at
band centerE ­ 0 for ±: M ­ 4, p : M ­ 8, ¶ : M ­ 16, and
D : M ­ 32. Inset: Thermodynamic localization lengthj as
function of disorderW obtained fromM ­ 4, 8, 16. (b)lMyM
as function of disorder strengthW with fr ­ 0.25 andE ­ 0
for ±: M ­ 16, p : M ­ 32, ¶ : M ­ 48, D : M ­ 64, and
h : M ­ 128. Left inset: Fit the thermodynamic localization
length j with the KT transition. Symbols are numerical data
Right inset: Scaling function using the data from (b).

are less than 0.01 which is smaller than symbol siz
The error bars are estimated from the last 500 iterat
steps. The striking difference with Fig. 1(a) is that a
curves merge together forW , Wc , 4. It is well known
from the finite-size scaling studies of phase transiti
that all curves for different sizes should cross at
single point (critical point) for a conventional continuou
transition [22]. Two examples for such a transition in th
localization problem are the three-dimensional Anders
model [21] and 2D case with spin-orbital interactio
[23]. However, Fig. 1(b) is quite different from the
conventional transition in the sense that there is no sin
crossing point, but all curves merge together forW , Wc.
This shows that there is a line of critical points fo
W , Wc, indicating that the system undergoes a disord
driven Kosterlitz-Thouless transition [22]. We have don
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a calculation [24] oflMyM without a random field. In
that case, we find, within numerical fluctuations, th
the critical valueWc . 0 whereas a finiteWc is found
in Fig. 1(b). Figure 1(b) might also answer why som
numerical studies [9] conclude that all states are localiz
since those authors were looking for the crossing
lMyM as the evidence of a MIT.

One unique feature about the KT transition is th
the localization lengthj (or correlation length) is of
exponential form on the localized side. In the left ins
of Fig. 1(b), we plotj for fr ­ 0.25 and E ­ 0. (The
results are similar for other values offr and E.) We
fit the data forj with j ~ expsay

p
W 2 Wc d, typical

for the KT transition. We findWc ­ 3.26 and a ­
18.1 6 0.1. The fitting is quite accurate, which support
the notion that the transition belongs to the KT-type.

We should warn readers that one has to treat the sm
W data with extreme caution because the localizati
length j grows exponentially with square of mean-fre
path [12,25]. Whenj is much larger than the widthM,
the validity of the transfer matrix method we were usin
is in question [21]. This might also explain the larg
fluctuations in Fig. 1(b) at smallW . However, using only
reliable data for largeW we can still conclude that there
exists a finiteWc below whichj diverges.

In Fig. 2 we show further numerical support for MIT
in a random field system. This support comes fro
comparison with 2D electron gas in a uniform magne
field. It is well known that there is an extended state at t
center of each Landau level [26]. As disorder increas
the extended state changes over to a localized one [27]
Fig. 2 we plotlMyM as a function of disorder strengthW
with a uniform perpendicular magnetic field. The field
set such that there are seven Landau bands, and ener
at the band center for theN ­ 1 Landau band. Figure 2
shows similar behavior oflMyM as in Fig. 1(b), namely,
all curves merge together forW , Wc . 5. Those states
with W , Wc are extended.

We have carried out numerical calculations for man
points on thefr-Wc plane for the random field problem
with E ­ 0 and E ­ 0.5 and find similar behavior in
lMyM for both energies. Presented in Fig. 3 is th
resulting phase boundary separating the metallic a
insulator regime. The phase diagram is determined by
points when those lines oflMyM for different M merge
together. The error bar inWc is 0.5 which is determined
by the spacing we chooseW . The states on the left of
each curve are extended.

The question remains: Why is there a KT transitio
in a random field system? To answer this question
have developed a mean field (MF) theory which ma
the system onto a random phaseXY model. Under a
2D Wigner-Jordan transformation [28], one can relate
particle creation operator with a spin operator for th
spin-1y2 system:

c1
j ­ eiuj S1

j , (2)
where
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FIG. 2. lMyM as a function of disorder strengthW with a
uniform perpendicular magnetic field. The field is set such
that there are seven Landau bands and energy is at the ba
center for theN ­ 1 Landau band.±: M ­ 4, p : M ­ 8, ¶ :
M ­ 16, andD : M ­ 32. Inset: Thermodynamic localization
lengthj as a function of disorderW .

uj ­
X
kfij

c1
j cj Im lnszj 2 zkd, zj ­ xj 1 iyj . (3)

Under this transformation, Eq. (1) is mapped to a spi
Hamiltonian,

H ­ t
X
k jkl

eifjk S1
j eisuj2ukdS2

k

1
X

j

wjsSz
j 1 1y2d 1 c.c., (4)

where the random phasefjk is due to the random
magnetic field and the summation is restricted to th
nearest neighbors. We make the MF approximation i
the phase factoruj : c1

j cj ! kc1
j cjl. This approximation

is expected to be accurate under three conditions: (i)
the presence of random phasefjk such that Aharonov-
Bohm phase is not crucial, (ii) for weak disorderwj ! 0,

FIG. 3. Phase diagram on thefr -W plane. The filled circles
are forE ­ 0.5; the opened ones are forE ­ 0.0. The states
on the left of each curve are extended.
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and (iii) for energy close to band center. The reason fo
(ii) and (iii) is to reduce the position dependence ofc1

j cj.
With these restrictions, one has [29]

HMF ­ t
X
k jkl

eifjk S1
j S2

k 1 c.c. (5)

The question now becomes whetherHMF , i.e., the random
phaseXY model, has a KT transition. Let us first conside
the limit fjk ! 0 which is precisely the quantumXY
model. There are some recent numerical studies [3
which conclude that the quantumXY model has a KT
transition. This provides a concrete example of a K
transition in a 2D quantum model. The 2D random phas
XY model has also been extensively investigated and K
transition has been confirmed [31]. We should mentio
that Eq. (5) is derived for energy at band center and in th
limit wj ! 0. For a finitewj the second term in Eq. (4)
is present and whether it changes the universality class
unclear.

Before ending this paper, we would like to make thre
remarks. (i) Theb function has the property [21]

b ~
d lnslMyMd

d ln M
. (6)

The curves forlMyM with different M merging together
for W , Wc [Fig. 1(b)] implies thatb ­ 0 in the metal-
lic phase. This might be a general property for the un
tary class [24]. Thus, the conductance is independent
sample length in the metallic phase. (ii) It will be inter-
esting to study the wave functions on the metallic side
There were early studies [32] which conclude that eigen
functions of 2D disordered systems show multifractal sta
tistics. Whether wave functions in a random field system
have such a property is worth investigating. (iii) Through
the mapping of Eq. (2), the vortex (or antivortex) excita
tion in the spin system corresponds to a magnetic doma
in the random field system where the magnetic moment
along the1z (or 2z) direction. The KT transition results
from the binding or unbinding of the two different kinds
of magnetic domains.

In summary, we have demonstrated that the rando
field system undergoes a disorder driven KT-type meta
insulator transition.
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