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Financial derivatives which are multivariate in nature are abundant in the
financial markets. The underlying state variables may be the stock prices,
interest rates, exchange rates, stochastic volatility, average of stock prices,
extremum values of stock prices, etc. Option contracts whose life and pay-
oftf depending on the stochastic movement of the underlying asset prices are
termed path dependent options. In this paper, we examine the pricing meth-
ods of several prototype path dependent options. These include options with
sequential barriers, options with an external barrier and two-asset lookback
options. The governing equations for the option prices are seen to resemble
the diffusion type equations but with cross derivative terms, a feature which
differs from the usual diffusion equations in engineering. Various techniques
to reduce the complexity of the multi-variate nature of these prototype op-
tion pricing models are discussed. It is illustrated that the dimensionality of
a path dependent option model may be reduced by some ingenious choices of
similarity variables. We also examine the design of pricing algorithms of these
multi-variate options, in particular, with regard to the treatment of discrete
monitoring feature and the prescription of numerical boundary conditions. The
possible generalizations of the numerical techniques presented in this paper to
other models with more complicated path dependent payoff structures are also
discussed.
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1. INTRODUCTION

By applying the riskless hedging principle, Black and Scholes [1] pio-
neered the development of the formulation of the pricing models of financial
derivatives. Since then, the complexity in the design of financial derivatives
has grown tremendously over the past decades. This is attributed to the
competition pressure among financial institutions for more innovative risk
management tools that are tailored to the specific needs of customers. In
particular, there has been a growing popularity for path dependent options,
so named since the payouts and the stopping times of these options depend
on the stochastic movement of the underlying asset prices during the whole
or part of the life of the options. The common path dependent features are
the barrier feature, Asian feature and lookback feature.

The multi-variate nature of the option pricing models arises from the
multiplicity of risk factors in the financial derivatives. The risk factors
include the prices of the underlying assets, interest rates, exchange rates,
stochastic volatility, average of asset prices, extremum values of asset prices,
etc. The discrete monitoring of the path dependent feature may also lead
to multi-variate nature, which arises from the correlation of the Geometric
Brownian magnifications of the asset price ratios corresponding to overlap-
ping time intervals.

In this paper, we would like to develop pricing methodologies for multi-
variate path dependent options, and illustrate the successes and limitations
of these techniques through the solution of several prototype option models.
The complexity of the pricing methods grows with the dimensionality of the
models. Since the governing equations of the option models are parabolic
in nature, one may achieve the reduction of dimensionality by some in-
genious choices of similarity variables. Also, though the analytical price
formulas of discretely monitored path dependent options normally involve
n-dimensional cumulative distribution functions, where n is the number of
monitoring instants, a carefully designed valuation algorithms may reduce
the pricing problem into a succession of one-dimensional problems.

This paper is organized as follows. In the next section, we develop the
analytical price formulas and numerical algorithms for the pricing of op-
tions with sequential barriers. The barriers can be monitored discretely
or continuously. In Section III, we construct the finite difference scheme
for two-asset option models, in particular, we address the tricky issue of
the prescription of numerical boundary conditions. Sample calculations
are performed to price options with single external barrier and two-asset
lookback options. The advantages and disadvantages of constructing the
difference schemes along the computational boundaries using the technique
of skew computational stencils are carefully examined. The paper is ended
with summaries and conclusions in the last section.



2. OPTIONS WITH SEQUENTIAL BARRIERS

A new class of barrier contracts having two barriers but with sequen-
tial breaching requirement have been structured in the financial markets.
Unlike the usual two-sided barrier options, the order of breaching of the
barriers is specified. The second barrier is activated only after the first
barrier has been hit earlier, and the option is knocked out only if both
barriers have been breached in the pre-specified order. The added feature
of choosing the order of breaching and positions of the barriers gives the
investors more flexibility to design the desired barrier clauses that fit their
views on the movement of the asset price.

By adopting the usual Black-Scholes pricing framework, the pricing of
continuously monitored European sequential barrier options has been re-
cently considered by Li [10] and Sidenius [13]. Here, we develop the explicit
analytic representation of the price formulas and valuation algorithms for
both continuously and discretely monitored European sequential barrier
options. Note that if the first barrier has been hit earlier, then the option
reduces to the usual single barrier option. Hence, it is only necessary to
consider the situation where the first barrier has never been hit.

2.1. Continuously monitored sequential barriers

The continuously monitored barrier models may not quite reflect mar-
ket reality since the continuous monitoring of the asset price movement on
the breaching of barrier is almost prohibitively impossible in real market
situations. Rather, daily or weekly discrete monitoring is usually taken in
barrier option contracts. However, the discussion of the continuously mon-
itored case is included here since it exhibits elegant analytical tractability
and corresponds to the limiting case of infinite number of discretely moni-
tored instants.

Let the first barrier be an upstream barrier By and the second barrier
be a downstream barrier By, (B < Bp), both barrier levels are taken to
be constant. We would like to derive the pricing formula of this European
sequential barrier call option with strike price X and on an underlying
asset of price S. Since the second barrier By, is activated only when the
first barrier By is hit, the sequential barrier call option behaves like a
European up-and-out call with barrier By and the rebate at the asset
price S = Bpg is a down-and-out call with barrier By. This is because
when the first barrier is hit, the sequential barrier option can be essentially
replaced by a down-and-out call as the rebate.

Let Cyup-out (S,7; Br) denote the option value of a European up-and-out
call with barrier By and Cown-out (S, 7; Br,) denote the down-and-out coun-
terpart with barrier By, where T is the time to expiry. Also, let Q(w; S, Brr)
denote the density function of the first passage time when the first barrier



By is hit, where w is the time lapsed from the current time. The price of
the present call with sequential barriers is given by

Cseq(Sv T; BH, BL) — Cup—aut(Sv 73 BH)
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r,q and o are the riskless interest rate, dividend yield and volatility, respec-
tively. The valuation of the expressions in Eq. (2.1a) gives the following
analytical formula:
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where pt = r—q— < is the risk neutralized drift rate for In S and ¢4, (S, T)
is the price of the corresponding European vanilla call option.

It occurs that similar analytical price formula for c..q(S;7; Br, Br) has
been obtained by Li [10] using the reflection principle in restricted Brown-
ian process. However, the idea of taking the reduced single barrier option
as rebate upon breaching of the first barrier used in formulating Eq. (2.1a)
is crucial in the construction of the numerical schemes for solving the dis-
cretely monitored sequential barrier options [see Eq. (2.7)].

2.2. Discretely monitored sequential barriers

Next, we would like to derive the analytical price formula for a European
option with discretely monitored sequential barriers, where the upstream
barrier By is the first barrier and the downstream barrier By, is the second
barrier. The sequential barrier option survives up to the expiration time
if either (i) the first barrier is never breached, except possibly at the last
monitoring instant, or (ii) the first barrier has been breached but the second
barrier is never breached at all subsequent monitoring instants. Let £ and T'
be the current time and expiration time, respectively, and #; <1y < --- <
t, be the n monitoring instants between ¢ and 1. Let S, (ST) denote the
asset price at time £;(7T"). The value of this discretely monitored sequential
barrier call option is given by
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where 7 = T'—t, 1;.; is the indicator function and £ denotes the expectation
under the probability measure associated with the risk neutral asset price
process with 7 — ¢ as the drift rate. The first term corresponds to the
case where the first barrier is not breached at tq,---%,_1, the second term
corresponds to the case where the first barrier is first breached at 7,,_; but
the second barrier is not breached at ?,,-- -, the last term corresponds to
the case where the first barrier is breached at f; but the second barrier is
not breached at all subsequent monitoring instants.

The multi-dimensionality of the discretely monitored model arises from
the calculations of the conditional expectation of the terminal payoff under
the joint processes of the asset price ratios corresponding to overlapping
time intervals. By direct evaluation of the above expectations (see [7] for
the technique of expectation calculations used in their single barrier option
model), the barrier option value is found to be
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where N, is the n-dimensional cumulative normal distribution function,
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Further, v is a n x n correlation matrix and I'V,j = 1,2,---,n — 1, are
(n+1) x (n+1) correlation matrices. Since y and 'V, j = 1,2,---,n—1 are
symmetric matrices with unit diagonal entries, the matrices are well defined
provided that their (k, £)t" entries, k < f, are specified. The (k, )*" entry,
k < £, in the correlation matrix 7y is given by

%:—f ifl+£n

A Y = 2

The form of the (k, £)*" entry, k < £, in the correlation matrix I'V depends
on the ordering of &, # and j and whether £ = n + 1 or not. The entries in
the correlation matrix I'V are

Lt jfj<k<flork<l<j [L#n+1

te—t
; —\/ Bt k<<, (#n+1
Iy, = _ ‘ (2.6)
— if k£ < 7, f=n+1
L=l ifj <K, f=n+1

The numerical valuation of N, (-) appearing in the analytic formula (2.3)
(where 1 may take value beyond 100) can be very computationally de-
manding (see [12] for the quasi Monte Carlo method for the numerical
valuation of related derivative models). Fortunately, the valuation prob-
lem can be reduced into succession of one-dimensional problems as shown
in the following subsection.

2.3. Numerical schemes

The valuation algorithm for the pricing of discretely monitored sequential
barrier call option can be constructed by a slight modification of the existing
finite difference algorithm for discretely monitored barrier options.

Let 7] denote the last monitoring instant, 75 denote the second last
monitoring instant, etc. Let %k; denote the number of time steps between
Tiyand 75, =1,2,--- (take 75 = 0). Tt would be convenient to choose
T;f, 7 =1,2,--- to fall onto horizontal layers of nodes in the finite difference
meshes by adjusting the time steps accordingly. If the time intervals be-
tween the monitoring instants are uniform, then the time step can be taken
to be constant, and this also results the same k; for different values of j.
When k;’s are chosen to be equal to one for all j, the calculations give the
option values corresponding to continuous monitoring of the barriers. With
regard to the placing of the barriers, it has been known that best accuracy
can be achieved if the barrier is placed between two vertical columns of



nodes for the discretely monitored barrier options and exactly on a vertical
column of nodes for the continuously monitored counterparts [2].

To initiate the calculations, we observe that the value of the present
option equals to that of the corresponding vanilla counterpart at the last
monitoring instant since no knock-out is possible between the last monitor-
ing instant and the expiration time. One may use the Black-Scholes pricing
formula for vanilla option to compute the option values at the nodes at the
last monitoring instant 75. This is recommended since it would avoid the
possible deterioration of accuracy in subsequent calculations at later time
steps arising from the discontinuity of the first order derivative of the ter-
minal payoff function.

We perform the usual finite difference time marching procedure using
the standard finite difference scheme since the present option behaves like
a vanilla option between monitoring instants. When the time step corre-
sponding to a monitoring instant is reached, the option values obtained
from the time marching calculations at nodes below © = In By are kept
unchanged while the option values at nodes above x = In By are set equal
to the values of the corresponding down-and-out barrier option. This is
because the first barrier By has been breached already so the present op-
tion with sequential barriers behaves like an ordinary down-and-out option.
This follows the same approach of taking a down-and-out option as rebate
upon breaching of the first barrier [see Eq. (2.1a)].

In summary, the finite difference scheme can be succinctly represented
by

m um, ifr; >InBy and mAt =75,j#1
Vj - { J m—1 m—1 m—1\ _ —rAt 7 (27)
(puVj+1 +poVi T +pdVi )e otherwise

where U 7' 1s the option value of the down-and-out call at the same node.
Actually, U 7" and V7" represent the option values at node (j,m) with and
without breaching of the first barrier, respectively. The coeflicients p,,, po
and py are given by

w+c w—c

5 Pa=—5— and po=1-p, (2.8)

Pu =

At 2\ At
where 1 = o2 N and c=[r— %) e Here, At and Az are the time

step and stepwidth used in the finite difference calculations, respectively.
First, a prior finite difference valuation procedure for the down-and-
out barrier option values U;-”’ is required. Once U ;* are known, the time
marching calculations for ij resemble those for a plain vanilla option.
Hence, the complexity of the numerical algorithm for the sequential barrier
option is roughly equal to the sum of those for a down-and-out barrier



option and a plain vanilla option. The finite difference calculations for an
one-asset option model require 3N M multiplications and 2N M additions,
where N and M are the total number of time steps and the total number
of spatial steps in the calculations, respectively. Typically, N =~ 500 and
M =2 30 are required in order to achieve percentage error in option values
to be less than 0.1%.

As a remark, similar approach of algorithm design can be applied to
other types of barrier options, like the Parisian options, where the knock-
out depends on the history of breaching of the barriers. In Parisian option
calculations, one needs to add a counting index K as an extra dimension,
where K counts the number of breaching of barriers occurred so far. In the
present sequential barrier option calculations, K takes the value either 0
or 1, corresponding to no breaching or occurrence of breaching of the first
barrier, respectively.

2.4. Sample calculations

A numerical experiment was performed to verify the validity of the above
proposed algorithm. Using scheme (2.7), the values of the European call
options with discretely monitored sequential barriers were computed with
varying number of monitoring instants n. The parameter values chosen for
these call options are:

interest rate r 5%
volatility o 25%
dividend yield q 0%

time to expiry T 1 (year)
spot asset price S 100

strike price X 95

first barrier level By 105
second barrier level By, 90

For a fixed value of n, several numerical option values were obtained us-
ing different number of time steps k between successive monitoring instants.
The Shanks transformation, which is a standard non-linear extrapolation
technique, was applied to the numerical option values obtained with vary-
ing number of time steps so as to obtain the best estimate of the option
value. These best estimated option values corresponding to different mon-
itoring frequencies are plotted against 1/y/n in Figure 1. The continuously
monitored case corresponds to n — oo or 1/4/n = 0, and the corresponding
option value of 12.93 was obtained via numerical valuation of the analytic
formula in Eq. (2.1c). The convergence trend of the option values with
varying n to the limit corresponding to continuous monitoring is well re-
vealed in Figure 1.
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FIG. 1 The plot reveals the convergence trend of the call option
values with discretely monitored sequential barriers against 1/4/n.
Here, n denotes the number of monitoring instants.

The exhibited rate of convergence of O(%) of the discretely moni-
tored barrier option values to the continuously monitored barrier option
value (see Figure 1) does agree with similar results on continuity correc-
tions for level-crossing probabilities of random walk. For example, Broadie
et al. [3] showed in their continuity correction formula for discrete bar-
rier options that one should shift the barrier away from S by a factor of
exp(ﬁa\/A_T ), where AT is the uniform time interval between successive
monitoring instants and 5 ~ 0.5826.

3. VALUATION ALGORITHMS FOR TWO-ASSET OPTION
MODELS

In this section, we would like to illustrate the general approach of de-
veloping valuation algorithms for pricing multivariate path dependent op-
tions. We present the derivation method for the construction of explicit
finite schemes of approximating the multi-dimensional diffusion type equa-
tions with cross-derivative terms. It is seen that the direct finite difference
discretization of the cross-derivative term in the two-asset option price
equation would lead to an explicit scheme with 9 points at the old time
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level. On the other hand, the frequently used Hopscotch method [5] still
involves 7 points at the old time level. The explicit finite difference scheme
depicted below, which is derived using the Fourier method, uses a symmet-
ric stencil which involves only 5 points at the old time level. At each lattice
node, the 5-point scheme requires 5 multiplications and 4 additions, while
the 7-point Hopscotch scheme requires 7 multiplications and 6 additions.

3.1. Derivation method based on the Fourier modes expansion

We consider the class of two-asset option pricing models where the dy-
namics of the underlying asset prices follow the lognormal distributions.
Let V = V(5y, S2,7) denote the option price of a two-asset option, where
S and Sy are the asset prices with ¢; and 05 as their respective volatil-
ities. Let p denote the correlation coeflicient between the two lognormal
processes. By writing

21 =InS;, 2o =1InSy and wv(zy,22,7) =€ "TV(5,5,7), (3.1)

the governing equation for v = v(xy, xs, 7) is given by

v o} & oo o2v 0% 0%
or 2 ox? PO 20w 01y ' 2 ox3
2 2
oy\ Ov o5\ Ov
P A (R 3.2
+<T % 2>6x1+<7“ %2 2)(%2, (3.2)

where ¢; and ¢o are the dividend yields of S; and Ss, respectively. We
would like to devise two-level explicit schemes of the form
Vi = bt e F b0
—+ b,171’l)’]r-7;17k+1 -+ b,17,1U?717k71 -+ boyo’l};ﬁk, (33)

where only 5 points at the old n'* time level are involved.

Suppose the eigenfunction solution of the continuous problem takes the
form

v(ry, T2, T) = A(T)eFr o1 eth2T2 (3.4)

which is feasible for domains with periodic boundary conditions. By sub-
stituting the above solution into Eq. (3.2), we deduce that A(7) satisfies

dA(T k202 k202
d(T) {— L — plykyoyog — 22

+ ik <7« — - ";) ik <7« g %5” A(7). (3.5)
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If we relate v(xy, 22, 7 + AT) and v(xy, 22, T) by
v(xy, 22, T + AT) = B(AT; 201, 22)0(21, 22, T), (3.6)

where F(/A\T;xy, z2) is the time evolution operator for the continuous prob-
lem, then it is seen that

(D, as) = exp (—5Hed — pyiptass — 265 +iegy +icata)
(3.7)

where

At 2Ot
AI%’ H2 = 2&%%7

o\ At o3\ At
— (r—ql — 71> Ao and ¢y — (T—QQ — 72> . (3.8)

The relative orders of magnitude of the stepwidth, Az; and Axs, and the
time step At should observe O(At) = O(Ax?) = O(Az3) in order to satisfy
the stability requrements.

On the other hand, we assume that the finite difference scheme (3.3) ad-
mits periodic eigenfunction solution of the form Ameik1iAe1gikekfaz  Cor-
respondingly, we define the discrete evolution operator K (AT;&;,&2) by
the relation

€1 = kiAxy, & = keAxo, py =0}

Vit = K (AT 61, &) (3.9)

By substituting the discrete eigenfunction solution into Eq. (3.3) and ob-
serving Eq. (3.9), we obtain

K(ATv 517 52) = b070 + b171€i(§1+§2) + blyilei(flffZ)
+ b,lylei(fﬁ&) + b71771€i(7§17§2)_ (3.10)

The coeflicients by g, 011,01, -1,0-1,1 and b1 1 are determined by expanding
E(AT;€1,&) and K(AT;€1,£2) in powers of & and &3 up to the second
order terms and equating the corresponding like power terms of £; and &».
This leads to the following linear system of algebraic equations

boo+b11+b01,-1+b11+0 11 =1
bip+tb—1—bo11—b1-1=0¢
bip—bi—1+b_11—-b11=0

big+by—1+boy1 by 1=+ ¢ = o+ 3
bi1—b1-1—b_11+b_1,_1=p/afiz+ cica. (3.11)
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the solution of which gives the required coefficients in the explicit scheme
(3.3). Note that there is a constraint on the relative magnitude of Az and
Ars, as dictated by the relation: g + C% = o + C%.

The technique of assuming Fourier eigenfunction solutions and match-
ing the corresponding like power terms in £; and &3 in the expansion of the
continuous and discrete evolution operators is known to have general appli-
cability. All types of explicit and implicit schemes for solving two-asset or
higher dimensional option models can be derived in this systematic manner.

Skew computational stencils

When the numerical boundary conditions along the boundaries of the
computational domain cannot be inferred from the partial differential equa-
tion formulation of the continuous problem, the artificial imposition of
numerical boundary conditions may lead to substantial errors in the cal-
culated option values. For example, in the finite difference calculations for
callable bonds, Buttler [4] illustrated through extensive numerical experi-
ments that the accuracy of the bond values depends sensibly on the choice
of the imposed numerical boundary condition at the limiting zero value of
the interest rate. In general, it is preferable to use a skew computational
stencil along the boundary nodes rather than to adopt an inaccurately
prescribed numerical boundary conditions.

Consider the choice of the computational stencil along the far right
boundary of a two-dimensional computational domain as shown in Figure
2. The corresponding two-level explicit scheme takes the form

UNe = ON-2kVR o+ ON- 1k VR e 1 ON- LR 1Rk
T ON R+ 1IVR 1 F ONRVN AN R 1VN 1 (3.12)

This skew stencil avoids the use of fictitious points beyond the right
boundary of the computational domain, but at the expense of the loss of
symmetry. The numerical scheme (3.12) approximates the governing equa-
tion (3.2), same as scheme (3.3) does, on the ground that the option value
at node (N, k) still satisfies the governing equation. With non-symmetric
stencil, 6 points instead of 5 points are required at the old time level since
there are 6 relations to be satisfied. These relations are obtained by match-
ing like power terms in & and & up to the second order and the coeflicients
must be summed to one. The corresponding linear system of algebraic
equations for the coeflicients in the numerical scheme is given by

N 2k +ON k1 FOAN1E-1 T ON Rl FONE FON g = 1
—200N 2% —ON 1 k41— AN-1,k—1 = C1

ON-1k+1 T ONEk+1 — ON-1k—1 — ONE—1 = C2
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2
N1 k1 T4ON 2% T ON 11 = M1+ &

2
ON-1k+1 T ONEk+1 T ON-1 k-1 + ONE—1 = M2+ C5

—QN-1k+1 — ON-1k-1 = Py/H1f2 + C1Ca. (3.13)
(N=-1, k+1)
. (N, k+1)
(20 V. 0
. N, k-1
(N1, k=1) &, #=1)
right boundary

FIG. 2 Non-symmetric computational stencil along the far right
boundary of a two-dimensional computational domain.

The same approach can be used to devise the modified numerical schemes
for nodes along any boundary or at a corner of the computational domain.
One drawback of adopting such skew discretized schemes along the bound-
aries is the possible loss of overall order of accuracy of the calculated option
values with the loss of symmetry. This is because the leading truncation
error terms are second order in Az; and Axgy (or equivalently, first order
in At) when a symmetric stencil is used, but the error terms become first
order in Axy and Axs when a skew stencil is adopted.

To illustrate the applicabilities of the above proposed numerical schemes,
we performed sample calculations on two path dependent option models,
namely, options with single external barrier and two-asset lookback options.

3.2. Options with single external barrier
The barrier option models with single external barrier are desirable for
our purpose since closed form analytical price formulas are available when
the barrier is monitored continuously (see [9]), thus making the comparison
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of numerical accuracy of calculated option values feasible. Sample calcula-
tions for both continuously monitored and discretely monitored cases were
performed using explicit scheme (3.12), together with various techniques of
treatment of boundary conditions.

For the continuously monitored European call option with single external
barrier, the governing equation for the option price is given by Eq. (3.2).
The initial condition is

v(xy, x9,0) = max(e” — X,0), —oo <y <o00,x2 >InB, (3.14)
while the boundary conditions are

v(zy,InB,7) =0, lim v(xy,2,7) =0

| — —00

T

lim v(xy,22,7) =€ "cg(xy,T), T >0, (3.15)

Lo—r 00

where X and B are the strike price and the barrier level, respectively, and
¢g(xy, 7) is the price of the European vanilla counterpart. The boundary
condition at the far field 1 — oo can be quite tricky to be deduced.
Kwok et al. managed to deduce the asymptotic boundary condition for
the continuously monitored case (see Egs. (32, 33), [9]). However, when
the barrier is monitored discretely, the corresponding asymptotic formula
for the far field boundary condition at x; — oo is not readily available.

For continuously monitored case, we compare the order of accuracy of
the calculated option values obtained using (i) skew stencils along bound-
ary nodes, and (ii) asymptotic formulas for boundary conditions. The
parameter values chosen for the two-asset external barrier option models
are: 7 = 5%, 01 = 03 = 20%,q; = ¢ = 0,7 = 0.5, X = 20,B = 15,p =
0.5,10 < 57 80,15 < 55 < 95.

To access the order of accuracy of the calculated option values, we com-
pute the root mean squared error (RMSE) by summing all squared errors
at all nodes, taking the square root and dividing by the number of nodes.
Figure 3 shows the plots of In RMSE against In At for option values ob-
tained by both methods of treatment of the far field boundary conditions.
The slopes of the plots reveal that the calculated option values using skew
stencil and asymptotic formula are almost proportional to \/Af and Af,
respectively. When the time step At is decreased by a factor of one fourth,
the errors of calculated option values are decreased by about half using
skew stencil and decreased by about one fourth using asymptotic formula
for boundary condition. The imposition of lower order discretized schemes
along the boundaries of the computational domain reduces the overall order
of accuracy of the numerical option values.
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FIG. 3 Plots of In RMSE against In At for option values obtained
using the techniques of skew stencil and asymptotic formula. By
regression calculations, the slopes of the upper line (skew stencil)
and the lower line (asymptotic formula) are found to be 0.4930
and 0.9927, respectively.

For discretely monitored case, the skew discretized schemes must be used
for boundary nodes since the asymptotic formulas for the boundary condi-
tions are not available. In the numerical valuation of discretely monitored
barrier options, the truncation of domain and the application of the bar-
rier conditions are applied only at those time levels which correspond to
monitoring instants. For nodes along the boundary of the computational
domain whose values are not explicitly prescribed, we use the skew dis-
cretized schemes. We computed the values of discretely monitored external
barrier options with varying number of monitoring instants n and plot the
option values against 1/,/n in Figure 4. The parameter values chosen for
the calculations are: r = 5%,0; = 02 = 25%,¢1 = ¢ = 0,7 = 1, X =
95, B =90, p = 0.5, 57 = S5 = 100. The values of the discretely monitored
barrier options apparently converge to that of the continuously monitored
counterpart as the number of monitoring instants tends to infinity.

The pricing algorithms for the external barrier option models can be ex-
tended to the pricing of contingent claim models of analyzing the credit risk
of corporate debt issuers (see [11]). In these credit risk models, the stochas-
tic state variables are the firm value and the interest rate; and the issuing
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firm defaults when the firm value falls below some threshold value (down-
and-out barrier). In the differential equation formulation of these models,
one would encounter the difficulties of prescribing the boundary conditions
at vanishing interest rate and exceedingly high firm value. The technique
of adopting skew computational stencil along the domain boundaries could
help avoid the prescription of artificial numerical boundary conditions.

11.5

option value

75 L L L L

0 0.05 0.1 0.15 0.2 0.25
1/sqrt(n)
FIG. 4 The apparent trend of convergence of the option values of
discretely monitored external barrier options to that of the con-
tinuously monitored counterpart is demonstrated.

3.3. Two-asset lookback option models

We consider the valuation of the European two-asset lookback option
model where the terminal payofl involves the difference of one asset price
and the extremum of another asset price. Let M7 denote the maximum
of asset price S7 over the period [Tp,1], where Ty is the starting time of
the lookback period and f is the current time. The terminal payoff of this
two-asset European lookback option at ¢ = 1", where T is the expiry date,
is taken to be max(M; — S3,0). The governing equation for the lookback
option price is known to be identical to that for the usual two-asset vanilla
option models, except that the auxiliary conditions in the lookback option
model involve an additional path dependent state variable, M;. Hence,
the present lookback option price V' is a function of three state variables:

51,59, My and time to expiry 7. Note that 5] is defined only for S7 < M.

ov
The boundary condition at S; = M is given by EIA = 0, using
1 Si=
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the familiar argument that V' should be insensitive to the change in M,
once S hits M; (see [8]).

Let V(51, S2, My, T) denote the value of the two-asset lookback option.
Define the following similarity variables:

v M S:
U= —e 97, z =In— and 2z =ln—, (3.16)
1 1 Sl

the governing equation for u = u(zy, 25, 7) can be expressed as

Ju 0% u 9?u 0%, O*u

or 262“}1 2 0m 2 022

ou 0%\ Ou
PRy g -T2 M (347
+ <q1 r— > 52t <q1 ©-5 )5y G170

where p is the correlation coefficient between S; and Ss, and

o1 — poy

2 .2 2 5—
0Yy = 07 —2p0109+05 and p= -~

(3.18)
The auxiliary conditions are
ou
u(#1, #2,0) = max(e” —e*,0) and 67(0722,7—) =0. (3.19)
1

Note that the dimension in the pricing model of the lookback option model
can be reduced by one by using S as the numeraire. The choice of the
similarity variables in Eq. (3.16) leads to the Neumann condition at z; = 0.
Again, it is not so straightforward to prescribe the boundary conditions at
the other boundaries of the problem domain.

To evaluate the value of this lookback option, He et al. [6] adopted
the approach of finding the probability density of the maximum of one
asset price process and another asset price process, then computing the
discounted expectation of the terminal payofl by integrating the product
of the density function and the terminal payoff. Suppose we define

M
Z =In—+ (3.20)

where M is the maximum of the price of asset one over [t,T], then the
lookback option value is given by

/ le / max Slemax(zhzl Sle

P[2(t) € dz1, 22(t) € dzo] dza,  (3.21)
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where 2z and 23 are defined in Eq. (3.16), and P[Z(f) € dzy, 22(t) € dzy]
is the required joint density function. We manage to obtain the following
price formula for the two-asset lookback option:
V(S1,82, My, 7) = Mie” " Nao(ky, li; p) — Sae” P27 Na(ka, l2; p)
+ S1e” T No(k, by —p) — Sae” ©T Na(ka, l2; —p)

2(r—gq)u

+Sle’”/ e 71z No(k(u), l(u); p) du, (3.22)
where

Sa 2
kl - ) k2 - kl - 0-2\/7_—7
0'2\/7_'
2

lnMJ-—<7“—q1—51- T

2
lnMJ-—<7“—q2—£2~ T

2

0-1\/7_— ’
2

N ln%—(qz—ql—%z)T I

ky = o ko =k — o012V,

0'12\/7_'

2
_ln%ll-Jr(T—qlJr%]—)T

EQ - El - /)02\/7_—7

6 = — b=+ po/T, (3.23)
—u—(r—ql—%)T

k(u): 01\/7—_ )
In2t +u— 7“—(]2—ﬁ T

(e g)

-2 .
Oor/T pal\/F

We performed the computation of the lookback option values using the
finite difference scheme, together with the adoption of skew discretized
schemes along the computational boundaries other than z; = 0. The pa-
rameter values chosen for the two-asset lookback option are: r = 5%, 0; =
0y = 20%, 7T = 1,p = 05,1 = ¢ = 0,21 = 2z = 0.5. By valuation of
the analytical formula in Eq. (3.22), the lookback option values is found
to be 0.0992. In order to achieve percentage error of about 0.1%, our fi-
nite difference calculations used 450 time steps and 30 grid points in each
spatial dimension. The plot of In RMSE against In At in Figure 5 reveals
the square root rate of convergence in At of the numerical lookback option
values. This is not surprising since the discretization along the boundaries
of the computational domain other than z; = 0 is accurate only to O(Az)
and O(Az). As we observe O(At) = O(Az2?) = O(Az3) in lieu of stability

requirements, so square root rate of convergence in At results.
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In RMSE

FIG. 5 Plot of In RMSE of the numerical option values of the
two-asset European lookback option against In Af. The slope of
the regression line is found to be 0.5476, thus confirming roughly
square root rate of convergence in Af.

The finite difference algorithms for pricing other lookback options with
payoff structures like max(Syax — Smin — X, 0), max(S1 max — 92 min — X, 0),
etc. can be developed by following the above approach (see [6] for an
alternative approach, where He et al. computed the discounted expectation
of the terminal payoff by the direct numerical integration of the expectation
integrals). Tt is always advisable to normalize the extremum quantities by
the asset prices, that is, the asset prices are used as numeraires.

4. CONCLUSIONS

Several valuation techniques for the pricing of multivariate path depen-
dent options have been illustrated through three prototype option models,
namely, options with sequential barriers, options with single external bar-
rier and two-asset lookback options. The specific nature of the path depen-
dent feature of the option model, for example, the discrete monitoring of
the barrier, extremum of asset prices over a time period, may increase the
dimensionality of an option model beyond the number of underlying assets
in the option.



20

For practitioners in the financial markets, they prefer option pricing al-
gorithms that possess the characteristics of general applicabilities and ease
of design. The various types of valuation algorithms presented in this paper
are meant to achieve the above objectives.

For options with discretely monitored sequential barriers, though the an-
alytical price formula possesses analytical elegance, it is almost rendered
useless for valuation since it involves the high dimensional cumulative dis-
tribution functions. Fortunately, the corresponding numerical algorithm
can reduce the valuation problem into succession of one-dimensional prob-
lems. It turns out that the complexity of calculations is roughly equal to
the sum of those for a plain vanilla option and a single barrier option.

As illustrated by the sample calculations on options with single exter-
nal barrier, it is seen that in situations where the boundary conditions are
not explicitly specified in the option models, the choice of skew compu-
tational stencils at nodes along the computational boundaries provides an
easy route to avoid the artificial imposition of numerical boundary condi-
tions. However, the loss of symmetry in the skew stencils may lead to the
loss of order of accuracy in the calculated option values.

For the lookback options, the use of the asset prices as numeraires leads to
the reduction of dimensionality of the model. The finite difference approach
again exhibits its competitiveness in its ease of design and programming
efforts.

The search for better designed pricing algorithms for more complicated
multivariate path dependent options remains to be a challenging task for
finance researchers.
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