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Abstract

Using appropriate similarity transform, we present the partial differential equation
formulation of both floating strike and fixed strike American lookback option mod-
els. We examine the early exercise policies of the floating strike and fixed strike
American lookback options, while the realized extrmum of the asset price can be
monitored continuously or discretely. The characterizations of the optimal exercise
prices of American lookback options are also discussed. For the numerical valua-
tion of the American lookback options, several approaches for deriving efficient and
accurate numerical results are addressed.
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1 Introduction

Lookback options are path dependent options whose payoff depends on the
maximum or the minimum of the underlying asset price attained over a certain
period of time (called the lookback period). Lookback options can be broadly
classified into two types: fized strike and floating strike. Let mf, (M7 ) denote
the realized minimum (maximum) asset price over the lookback period [Tp, T
A floating strike lookback call gives the holder the right to buy at the lowest
realized price while a floating strike lookback put allows the holder to sell
at the highest realized price over the lookback period. Their terminal payoffs
are given by Sy — m%, and M% — Sr, respectively, where Sr is the terminal
asset price. Floating strike lookback options are in a sense not options since
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they are always exercised at expiration. A fixed strike lookback call (put) is
a call (put) option on the maximum (minimum) realized price. The terminal
payoffs for the fixed strike lookback call and put are max(M7, — X,0) and
max(X — m7T10, 0), respectively, where X is the strike price. Lookback options
guarantee “no-regrets” outcomes for the holders. However, one expects that
high premiums are charged for these lookback options, and this high cost
nature somewhat limits their wide spread usage.

The earlier works on the derivation of pricing formulas for lookback options
were reported by Goldman et al. [6], Conze and Viswanathan [4] and Garman
[5]. They followed the discounted expectation approach in their derivation
procedures and their results are limited to European-style lookback options.
For American-style lookback options, Conze and Viswanathan [4] obtained
upper bounds on the option values using the technique of Snell envelopes.
However, Barraquand and Pudet [2] showed from their numerical experiments
that the upper bounds on the American lookback option prices obtained from
Snell envelopes are quite loose.

Most of the pricing formulas derived for lookback option models are based
on the continuous monitoring for the extremum of the asset price process.
However, most financial contracts in real markets are settled by reference to
discrete monitoring of the price process at regular fixings. It is a well known
fact that the discrete monitoring feature has profound effect on the prices
of lookback options. Semi-closed form analytical formulas for discretely moni-
tored European lookback options were obtained by Heynen and Kat [7]. Cheuk
and Vorst [3] proposed an one-state variable version of the binomial scheme
for numerical valuation of both continuously and discretely monitored floating
strike lookback options. AitSahlia and Lai [1] applied the duality property of
random walk to develop a numerical methiod for the valuation of discretely
monitored European lookback options. Using an ingenious choice of similarity
variables, we illustrate that the dimensionality of the governing differential
equation for the floating strike American lookback option models can be re-
duced. However, similar success of dimension reduction cannot be achieved for
the fixed strike American lookback options.

In this paper, we would like to examine the early exercise policies of Ameri-
can lookback options. We formulate the pricing models of American lookback
options using the partial differential equation formulation, and then devise
numerical algorithms to solve the pricing models. This paper is organized as
follows. In the next section, we present the partial differential equation for-
mulation of both floating strike and fixed strike American lookback option
models. In Section 3, we discuss the different numerical algorithms for pric-
ing floating strike and fixed strike American lookback options. In Section 4,
we present the numerical results on the critical asset price of various types
of American lookback options. The characterization of the optimal exercise
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policies of the American lookback options is discussed. The paper is ended
with conclusive remarks in the last section.

2 Partial differential equation formulation

Let Ty and T denote the starting and expiration dates of a lookback option.
We assume that the lookback period is taken to be the whole life of the option
so that [Ty, T'] is the lookback period. Let ¢ denote the current time. We denote
the realized minimum and maximum asset prices from Ty to ¢t (Tp <t < T)
by

¢ - 4
ms = min S, and M, = max S, 1
To ™ p<u<t " To ™ plu<e ™™ @

respectively. The above formulation refers to the continuous monitoring of the
asset price process S,. We take the usual Black-Scholes assumptions in our
lookback option models. In the risk neutral world, the underlying asset price
is assumed to follow the lognormal diffusion process

% = (r — q)dt + 0dZ, (2)

where r,q and ¢ are the constant riskless interest rate, continuous dividend
vield and volatility, respectively. We consider the differential equation formu-
lation of floating strike and fixed strike American lookback options as follows:

American floating strike lookback options

First, we let P(S, M%,,t) denote the price of an American floating strike look-
back put option. It can be shown that the governing equation for the lookback
put value is given by [9]

aP 02 262P 6P * 1
—6—t—+?5’5§+(r—q)53§~rP—0, S*'<S<Mgp,Ty<t<T, (3)

where S5* = S*(t; M%) is the critical asset price at which the American look-
back put option would be optimally exercised. The variable M¥%, does not
appear in the differential equation, though it does appear as a parameter in
the auxiliary conditions. The final condition in the pricing model is the ter-
minal payoff function, namely,

P(Sy,M%,,T) = M7, — Sr. (4a)
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Using the fact that the lookback put price is insensitive to the current realized
maxima when S = M%,, the boundary condition at the right end is given by

oP
MZO at SZMtTO. (4b)

Since the American lookback put is exercised at S = S*, the corresponding
left-end boundary condition is given by

P(S*, M, 1) :M}O -5 (4c)
From the prescription of the auxiliary conditions, it is natural to use the asset

price as the numeraire to achieve the reduction of dimensionality of the pricing
model. Suppose we choose the following similarity variables:

Mt
z=1In STO’ (5a)
and
V(z,7) = P(S, M%,,1)/S, T=T-—1, (5b)

the corresponding governing equation becomes

vV _lPV v

5= g thp- —4V, 0<z<s0<7<T, (6)

Mt
where u = g —7r — "—22 and z* = In TTQ Since the asset price is used as the
numeraire, we expect that the discount rate for V should be equal to ¢, while

the drift rate for z becomes ¢ — r — ? The auxiliary conditions then become

V(z,0)=¢€" -1, %%(O,T) =0 and V(z",7)=¢" —1. (7)

The above differential equation formulation of the American lookback put
option resembles that of an American vanilla put option, except that the
boundary condition at & = 0 is of Neumann type. While it is a relatively
easy task to express the early exercise premium in an integral form for Amer-
ican vanilla options [8], unfortunately, this change of the nature of boundary
condition causes the derivation of the integral representation too cumbersome
for American lookback options. The evaluation of the early exercise premium
based on the corresponding integral representation would become too tedious,
so that such approach has little practical significance.

American fized strike lookback options

The success of the above similarity transformation of variables which reduces
the dimensionality of the floating strike lookback option models relies on the
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non-occurrence of any quantity which is in terms of actual dollars. However,
this situation does not come about in American fixed strike lookback option
models where the realized maxima M%, or realized minima mf, and the strike
price X both occur in the exercised payoff function.

We consider an American fixed strike lookback put option where the terminal
payofl is given by max(X — m%o, 0). Now, the appropriate similarity variables

are

X
9U—ln——‘§~ and y=In—r. (8)
To mTD

The governing equation for the American put value P(z,y,7) is given by

oP o26°P % 8P
E=?%§+(T—q_2)0 —rP, O<z<z",0<y<o0,0<7<T,(9)
where z* = . When mf, > X, the American fixed strike lookback put

option will never be exercised since the exercised payoff becomes zero. In
this case, it reduces to its European counterpart. The early exercise premium
associated with the fixed strike put exits only when mf, < X. Accordingly,
the domain of definition of the fixed strike put option model is only restricted
to 0 < y < oo. The corresponding auxiliary conditions become

P(z,y,0) = X max(1 —e¥,0), (10a)
oP oP

a_x(()’ Y, T) + a_y(()’ Y, T) =0, (10b)

Pz y,7) = X(1—e™). (10c)

Note that the independent variable y only appears in the auxiliary conditions
but not in the differential equation.

Discrete monitoring feature

The above formulation assumes continuous monitoring of the extremum of the
asset price process. In reality, the extremum of the price can only be monitored
discretely at predetermined fixing dates. Between two successive fixing dates,
the extremum price will not be recorded even a new extremum occurs, that
is, the extremum price stays at the value recorded at the last monitoring date
prior to the current time.

We consider a discretely monitored American floating strike lookback call
option. Let L be the total number of monitoring dates, and m, denote the
recorded minima at the ¢** monitoring date. When the current time does not
fall on one of the monitoring dates, the American floating strike lookback
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call option behaves like an American vanilla call option. The strike price is
a known quantity, which is the recorded minima on the last monitoring date
prior to the current time. Hence, the governing equation of the American call
price between consecutive monitoring dates is

ac .
at+—2— 852+(r—q)5——r0=0, 0< S <S8 te<t<tyy, (11)

as

where S* = S*(t; m,) is the critical asset price. On the other hand, when the
current time happens to be on a monitoring date, accordingly an updated
asset price minima is recorded. The above governing equation remains valid
except that the interval of definition of S is changed, that is,

oC _ o® ,6°C

ocC N
§+—2— @‘I‘(T—Q)S—_Tc—o; mZ<S<S1t—tlal_1)21"';L'(12)

0s

The left-end Neumann boundary condition

ocC

51—71_[=0 at S=my, (13)

is applied only on the monitoring dates. Over the time interval [t tey1), we
adopt the following set of similarity variables:

lenmi, and V = C(5,my,t)/S. (14)
¢

For American lookback option models with discrete monitoring feature, the
governing equation takes the same form as that of the continuous monitoring
counterparts. However, the interval of definition for « changes accordingly to
whether the current time is on a monitoring date or not. When the current
time is not on a monitoring date, the interval of definition is —co < z < 7,
where z* = In %2 However when the current time is on a monitoring date,
the interval becomes 0 < x < z*; and the corresponding left-end boundary
condition is given by
ov

—8—x(0,Te)=0, T1=T-tg. (15)

3 Construction of the numerical algorithms

The differential equation formulation of a continuously monitored floating
strike American lookback option resembles closely to that of the American
vanilla option, except that the near field boundary condition becomes the
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Neumann type. For the numerical solution of the pricing model, one can then
apply the standard finite difference scheme incorporated with the dynamic
programming procedure of taking the maximum of the continuation value and
exercised payoff at each lattice node.

For the discretely monitored floating strike American lookback option, we note
that the interval of definition of z equals (—o00,00) when the current time is
not falling on one of the monitoring dates, but becomes [0,00) otherwise.
However, the governing equation of the lookback option remains the same in
both cases. For convenience, we extend the interval of definition of the option
model from [0, 00) to (—00, o) when the current time hits a monitoring date.
The option value in the extended interval (—oo,0) is given by

Viz,t;7) =V(0,4), z<0. (16)

Here, ¢; is one of the monitoring dates and #; is the time just right before
t;. The following argument is used to justify the above claim. When the asset
price at time ¢; falls below the recorded minimum at the earlier monitoring
date #;_1, this asset value will become the new minimum on the monitoring
date t;. The corresponding value of z exactly on the monitoring date #; then
becomes 0.

The finite difference calculations for the discretely monitored American float-
ing strike lookback put option resemble those for the American vanilla coun-
terpart, except that some modifications are required at those time levels that
correspond to the monitoring dates. The interval of the computation domain
now extends to [-JAz, JAz] at all time levels for some sufficiently large J.
At those time levels corresponding to monitoring dates, the option values at
j=—-1,-2,--- —J are all set to have the same option value at j = 0, rather
than finding the option values using the finite difference scheme. One should
be cautioned that the similarity variable z in the floating strike lookback call
option is z = In ;Sz, and m, changes only when the time marching moves across
a monitoring date.

It is interesting to note that the governing equation for the fixed strike Amer-
ican lookback put option involves only the independent variable z (see Eq.
(9)), while the auxiliary conditions involve only the independent variable y
(see Egs. (10a-c)). The domain of the differential equation formulation is
the quarter plane. Since the finite difference solution must be solved within
a finite rectangular domain, we need to prescribe some artificial numerical
bounday conditions along the three sides of the numerical solution domain
{z,y):0<z<L;,0<y<Ly}:

(i) Along the side z = L,,0 < y < L,, the American fixed strike lookback put
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is sure to be exercised so that
P(L,,y,7) =X(1~eY), 0<y <L, (17)

(ii) Along the side y = L,,0 < z < L, the realised minimum m#, assumes
infinitesimal values. The American lookback put is deep-in-the-money, so it
will be exercised optimally. The asymptotic boundary values are then given
by

P(z,L,,7) =X, 0<z<L,. (18)

(iii} Along the side y = 0,0 < z < L., the option holder will never choose
to exercise the option. The American lookback put becomes an European
lookback put option, whose analytical price formula is available [4].

4 Characterization of the early exercise policies

In the semi-infinite domain {(z,7) : z > 0,0 < 7 < T} of the American
floating strike lookback put option model, the American put is alive when
z < z* and becomes dead when z > z*. The boundary which divides the
continuation region (option remains alive) and the stopping region (option
becomes dead) is time dependent, that is, * is a function of ¢. The above
observation leads to the conclusion that

S*(t; MY,)

W = FO), (19

for some function F(t). Similar to the usual arguments for American vanilla
put options that the critical exercise price should be a monotonically increasing
function of time, we also expect F'(t) to be a monotonically increasing function
of time. As deduced from Eq. (6), we observe that at a given time ¢, the
critical exercise price S*(¢; M, ) increases linearly with MY, . Since both F(t)
and MY, are increasing functions of time, and so 5*(t; M¥%,) increases as time
is approaching expiration.

Similarly, the critical asset price for the American floating strike lookback call
option observes the relation:
S*(t;my,)
—— =G(), (20)

o

where G(t) is a monotonically decreasing function of time. The plots of G(t)
against time ¢ with varying interest rate are shown in Figure 1. Since lower
value of interest rate causes the loss of the time value of the strike price to be
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smaller when the American call option is exercised prematurely, so the critical
asset price decreases when the interest rate assumes lower value.

Limiting behaviors of the critical asset prices

The limiting behaviors at times close to maturity of the critical asset prices
for the American floating strike lookback put and call options are respectively
given by

- *(g. t s z . $
tl_l}ITI‘l_ 5*(t; M,) = min (q’ 1) t1_1)171r‘14 M7, (21)
and
. * /2, t _ Z - i
tl_l)rTn~ S*(t;mz,) = max (q’ 1) tll}lq{lg my,. (22)

Since the strike prices of the American lookback put and call options are set
to be M7, and mZ , respectively, the usual argument of analysis of limiting
behaviors can be applied in a similar manner like that for ordinary American
vanilla options [8], and thus leads to the above results. The asymptotic result
stated in Eq. (22) is clearly revealed by the plots in Figure 1.

2r
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0.9 1

Figure 1Plot of G(t) against time ¢ for a continuously monitored American floating
strike lookback call option with varying interest rate. The parameter values of the
option model are: o = 20%, ¢ = 4%, m¥, = 75 and r is taken to be 2%, 4% and 6%,
successively.

Discrete monitoring
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The formulation of the discrete monitoring model is almost identical to that of
the continuous counterpart, except that the Neumann boundary condition is
applied only on the monitoring dates (see Eq. (13)). Therefore, the same argu-
reent for the analysis of the critical asset prices in the continuous monitoring
model can be applied, in particular, the relations between the critical asset
prices and historical maximum (minimum) values as depicted in Egs. (19-22)
can be obtained in a similar manner. However, one should be aware that the
similarity variable used in the discretely monitored models is modified when-
ever a monitoring instant is crossed, say, from z = In ——e—l toz=1In i as time
t passes through the value ¢,. Therefore, though the time dependent functlon

F(t) or G(t), remains continuous, the critical asset price itself, S*(¢; M;) or
S*(t; my), exhibits discrete jumps across the monitoring instants. The plots of
G(t) against t for discretely monitored American floating strike lookback call
options with different monitoring frequencies are shown in Figure 2. The con-
vergence of G(¢) of the discretely monitored option model at high monitoring
frequency to that of the continuously monitored counterpart is illustrated in
the figure.

Figure 2Plot of G(t) against time ¢ for a discretely monitored American floating
strike lookback call option with varying monitoring frequencies, L = 4,12,52. The
dotted curve corresponds to the plot of G(t) for the continuously monitored coun-
terpart. The parameter values of the option model are: o = 20%,¢9 = 6%,r = 2%
and T=1.

The functional dependence of S*(;m¥%, ) of an American fixed strike lookback

put option is more complicated compared to the floating strike counterpart.
.- . S*(tmE ) .
Now, the normalized critical asset price %"—) is no longer a function of
To

time only. The three-dimensional plot of —t—J—) against varying values of
To
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mi, and t of an American fixed strike lookback put is shown in Figure 3.
The American fixed strike put is never optimally exercised when mf, > X
since the exercised payoff becomes negative. The plot agrees with the financial

el 5*(t;ym} . .
intuition that —(m;n—TfL) stays slightly above one at low values of mf, , then it
Ty

increases with increasing value of mf, and tends to infinity as m%, tends to
§*(t;m? . . .
X from below. Also, for a fixed value of m%,, ——(m;nﬁ—) is a decreasing function
T

of time. The normalized critical asset price always attains the value one at
maturity, independent of the ratio r/¢. This is expected since the exercised
payoff involves actual cash settlement, not cash for asset. This is distinctive
from the limiting behavior at times close to maturity of the critical asset price
for the floating strike counterparts.

S'(tmnym(y)
a
Vi

a2
L w
i yi

0.4

' oo
m{tyX

S*(t;mh . .
Figure 3Plot of the normalized critical asset price —(mt—mlﬂl against varying values
To
of méwo and ¢ for an American fixed strike loockback put option. The parameter values

of the option model are: X = 100, ¢ = 20%,r = 6%,q=3% and T = 1.

5 Conclusions

In this paper, the early exercise policies of the floating strike and fixed strike
American lookback options are examined. The monitoring process for the ex-
tremum of the asset prices can be done either continuously or at predetermined
discrete instants. For floating strike American lookback optiens, since the pay-
off functions do not involve actual dollar numeration, it becomes natural to
use the asset price as the numeraire in the pricing models. The critical asset
price S* at which a floating strike American lookback option should be opti-
mally exercised is seen to be the product of the recorded realized extremum
at the current time and a time dependent function. The recorded realized
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extremum of the asset price at the current time refers to either the realized
extremum at the last monitoring date prior to the current time for discrete
monitoring or the current realized extremum for continuous monitoring. The
properties of the time dependent normalized critical asset price of the floating
strike American lookback options resemble those for the critical asset price
of the American vanilla counterparts. The convergence of the time dependent
normalized critical asset price curves for the discretely monitored models at
high monitoring frequencies to the normalized critical asset price for the con-
tinuously monitored counterpart is verified through numerical experiments.

For fixed strike American lookback options, since the payoff functions depend
on actual dollar numeration, the pricing models involve two stochastic state
variables, namely, the asset price process and the process for the extremum of
the asset prices. The functional dependence of the critical asset price on the
current realized extremum and time becomes more complicated for the fixed
strike lookback option models. One important observation is that it is never
optimal to exercise when the realized minima (maxima) is above (below) the
strike price for a fixed strike American lookback put (call) option.
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