Contents

1.	Con	nplex Numbers	. 1
	1.1	Complex numbers and their representations	. 1
	1.2	Algebraic properties of complex numbers	. 4
		1.2.1 De Moivre's theorem	. 6
	1.3	Geometric properties of complex numbers	
		1.3.1 <i>n</i> th roots of unity	
		1.3.2 Symmetry with respect to a circle	
		Some topological definitions	
	1.5	Complex infinity and Riemann sphere	
		1.5.1 Riemann sphere and stereographic projection	
		Applications in electrical circuits	
	1.7	Exercises	30
2 .	Ana	llytic Functions	36
	2.1	Functions of a complex variable	36
		2.1.1 Velocity of fluid flow emanating from a source	37
		2.1.2 Mapping properties of complex functions	39
		2.1.3 Definitions of exponential and trigonometric functions	43
	2.2	Limit and continuity of complex functions	43
		2.2.1 Limit of a complex function	
		2.2.2 Continuity of a complex function	
	2.3	Differentiation of complex functions	
		2.3.1 Complex velocity and acceleration	
	2.4	Cauchy-Riemann relations	
		2.4.1 Conjugate complex variables	
		Analyticity	
	2.6	Harmonic functions	
		2.6.1 Harmonic conjugate	
		2.6.2 Steady state temperature distribution	
		2.6.3 Poisson equation	
	2.7	Exercises	67
3.	Exp	onential, Logarithmic and Trigonometric Functions	74
	3.1	Exponential functions	74
		3.1.1 Definition from the first principles	75
		3.1.2 Manning properties of the complex exponential function	77

3.2	Trigonometric and hyperbolic functions	
	3.2.1 Mapping properties of the complex sine function	82
3.3	Logarithmic functions	
	3.3.1 Heat source	
	3.3.2 Temperature distribution in the upper half plane	
	Inverse trigonometric and hyperbolic functions	
	Generalized exponential and power functions	
3.6	Branch points, branch cuts and Riemann surfaces	
3.7	Exercises	.03
4. Con	nplex Integration 1	.09
4.1	Formulations of complex integration	.09
	4.1.1 Definite integral of a complex-valued function	
	of a real variable 1	10
	4.1.2 Complex integrals as line integrals	.11
4.2	Cauchy integral theorem	.18
4.3	Cauchy integral formula and its consequencies 1	.27
	4.3.1 Derivatives of contour integrals	.28
	4.3.2 Morera theorem	.32
	4.3.3 Consequences of the Cauchy integral formula 1	.33
4.4	Potential functions of conservative fields	
	4.4.1 Velocity potential and stream function of fluid flows 1	
	4.4.2 Electrostatic fields	
	4.4.3 Gravitational fields	
4.5	Exercises	.57
5 Tay	lor and Laurent Series	66
5.1	Complex sequences and series	66
	1 1	66
	5.1.2 Infinite series of complex numbers	
	5.1.3 Convergence tests of complex sequences	69
5.2	•	.72
	1	72
_		.74
		.78
5.4		.84
	5.4.1. Potential flow past an obstacle	.92

	5.5	Analytic continuation	195
		5.5.1 Reflection principle	197
	5.6	Exercises	198
6.	Sing	gularities and Calculus of Residues	207
	6.1	Classification of singular points	207
	6.2	Residues and the Residue Theorem	212
		6.2.1 Computational formulas for evaluating residues	214
	6.3	Evaluation of real integrals by residue calculus	218
		6.3.1 Integrals of trigonometric functions over $[0, 2\pi]$	218
		6.3.2 Integrals of rational functions	219
		6.3.3 Integrals involving multi-valued functions	221
		6.3.4 Miscellaneous types of integrals	225
	6.4	Fourier transforms	228
		6.4.1 Fourier inversion formula	229
		6.4.2 Evaluation of Fourier integrals	234
	6.5	Cauchy principal value of an improper integral	236
	6.6	Hydrodynamics in potential fluid flows	243
		6.6.1 Blasius laws of hydrodynamic force and moment	243
		6.6.2 Kutta-Joukowski lifting force theorem	247
	6.7	Exercises	248
7.	Bou	ndary Value Problems and Initial-Boundary	
	Valı	ie Problems	257
	7.1	Integral formulas of harmonic functions	258
		7.1.1 Poisson integral formula	258
		7.1.2 Schwarz integral formula	
		7.1.3 Neumann problems	
	7.2	Laplace transform and its inversion	
		7.2.1 Bromwich integrals	
	7.3	Initial-boundary value problems	
		7.3.1 Heat conduction	
		7.3.2 Longitudinal oscillations of an elastic thin rod	286
	7.4	Exercises	290
8.	Con	formal Mappings and Their Applications	301
	8.1	Conformal mappings	301
		8.1.1 Invariance of the Laplace equation	308
		8.1.2 Hodograph transformations	314

	8.2	Bilinear transformations	318
		8.2.1 Circle preserving property	320
		8.2.2 Symmetry preserving property	323
		8.2.3 Some special bilinear transformations	331
	8.3	Schwarz-Christoffel transformations	338
	8.4	Exercises	348
ç	Soli	ution to Exercises	358