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Efficient Pricing of Multi-state Lookbacks
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Abstract

The most common approach to derive the price formula of a financial derivative is the calculation
of the discounted expectation of the terminal payoff under the risk neutral measure. However,
the use of such approach to derive the price formulas of multi-state lookback options may lead
to insurmountable complexity in the analytic procedures. In this paper, we illustrate the use of
an alternative approach that significantly simplifies the analytic derivation of multi-state lookback
option price formulas. The new approach involves the choice of a sub-replicating portfolio and the
adoption of the corresponding replenishing strategy to achieve the subsequent full replication of
the derivative. Our work demonstrates the elegant use of financial intuition that greatly facilitates
the analytic tractability in pricing exotic derivatives.

1. Introduction

Lookback options provide the opportunity for the holders to realize attractive gains in the event
of substantial price movement of the underlying assets during the life of the option. To capture
the price volatility of an asset, an investor may be interested to purchase a lookback option on
the spread between the maximum and minimum prices of the underlying asset over a given time
period. This option has come to be known as the lookback spread option. Also, one may structure
lookback options on two underlying assets. The semi-double lookback options are options whose
terminal payoff depends on the extreme value of one asset price and the terminal value of another
asset price. If the terminal payoff of a lookback option depends on the extreme values of both
asset prices, then the option is called a full double lookback option. All these types of lookback
options can be collectively called two-state lookback options (He et al., 1998). More exotic forms of
lookback payoffs, like the hot dog option, bounded cliquet lookback, etc., are discussed in Babsiri
and Noel’s paper (1998).
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The pricing of lookback options poses interesting mathematical challenges. The analytic price
formulas for one-asset lookback options have been systematically derived by Goldman et al. (1979),
and Conze and Viswanathan (1991). For two-state lookback options, the analytic expressions of
the joint probability density functions of the extreme values and terminal values of the prices of
the underlying assets have been obtained by He et al. (1998) and Babsiri and Noel (1998). These
probability density functions are used in the valuation of the lookback option prices via numerical
integration of the discounted expectation integrals or Monte Carlo simulation.

A more careful examination of He et al.’s formulation reviews that their computational proce-
dures involve double numerical differentiation of the density function followed by double numerical
integration over infinite and/or semi-infinite intervals. It is well known that numerical differenti-
ation is a highly unstable procedure and numerical integration over an infinite interval commonly
faces with difficulties of treating the tailed region. In this paper, we illustrate how to obtain the
price formulas for European style multi-state lookback options where the final analytic forms involve
only single integration of a probability distribution function over a finite interval. Correspondingly,
the complexity of numerical valuation of these price formulas is significantly reduced. Further, our
methodology is not limited to pricing models where lognormal processes of the asset prices are
assumed. The resulted simplicity of the price formulas stems from an elegant financial intuition.
Instead of following the usual approach of evaluating the discounted risk neutral expectation of the
terminal payoff, we choose a sub-replicating portfolio for the lookback option, then followed by the
adoption of the corresponding replenishing strategy to achieve the full replication of the option.

The paper is organized as follows. In Section 2, we discuss the concepts of sub-replication
and replenishing premium and illustrate the use of the technique to the pricing of European vanilla
options. We then apply the methodology to derive the price formulas of one-asset European floating
strike and fixed strike lookback options (the monitoring process for the extreme values can be
continuous or discrete). The analogy between the replenishing premium and the strike bonus
premium (Garman, 1992) is highlighted. In Section 3, we derive the price formulas of the one-asset
and two-asset lookback spread options. The succinct representation of the price formula naturally
reveals the financial intuition behind the derivation procedure. Our pricing methodology is applied
further to the pricing of options on the extreme value of one asset and the terminal values of
several assets in Section 4. The paper is ended with conclusive remarks in the last section. In the
Appendix, we list different probability distribution functions (under the assumption of lognormal
process for the asset prices) that occur in the price formulas of various lookback options derived in
the paper.

2. Concepts of sub-replication and replenishing premium

The innovative concept of riskless hedging initiates the development of the option pricing theory.
Black and Scholes (1973) showed that the risk of an option can be hedged by combining the option
with an appropriate amount of the underlying asset to form a riskless portfolio. In order to avoid
arbitrage, the riskless portfolio should earn the riskless interest rate. Alternatively, Merton (1973)
showed that the option can be replicated by a portfolio of the underlying asset and the riskless
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bond. Assuming frictionless market and no premature termination of the option contract, suppose
the option’s payoff matches with that of the replicating portfolio at maturity, then the value of the
option is equal to the value of the replicating portfolio at all times throughout the life of the option.
If every derivative can be replicated by a portfolio of the fundamental assets in the market, then
the market is said to be complete.

From the theory of financial economics, one can show that the condition of no arbitrage is
equivalent to the existence of an equivalent martingale measure. Further, if the market is complete
(all contingent claims can be replicated), then the equivalent martingale measure is unique. The
above statements are the essence of the Fundamental Theorem of Asset Pricing. The Theorem
leads to the identification of a new probability measure in the pricing of contingent claims, which
is commonly called the risk neutral probability. 1t can be shown that the replication based price of
any contingent claim can be obtained by calculating the discounted expected value of its terminal
payoff under the risk neutral probability (Harrison and Kreps, 1979). This has come to be known
as the risk neutral pricing. The term risk neutrality is used since all assets in the market offer
the same return under this probability, so an investor who is neutral to risk and faces with this
probability would be indifferent among various assets. The concepts of replicable contingent claims,
absence of arbitrage and risk neutrality form the cornerstones of the modern option pricing theory.

In the literature, the price formulas of lookback options were derived based on the approach
of calculating the discounted risk neutral expectation of the terminal payoff. In the coming sub-
sections, we illustrate a new approach of derivative pricing through a careful examination of the
pricing of the vanilla options and the one-asset floating strike and fixed strike lookback options.
We then demonstrate the robustness of the new approach through the pricing of various types of
multi-state lookback options in Sections 3 and 4. In this paper, the resulting price formulas are in
general expressed as the sum of the prices of one or several elementary derivatives plus an integral
with a probability distribution function as the integrand. For common types of asset price process,
like the lognormal process, the analytic representations of the probability distribution functions are
readily available in the literature. Besides, the integration limits in these integrals are finite values.
Therefore, the numerical evaluation of these price formulas can be performed in a straightforward
manner.

2.1 New perspective on the pricing of vanilla options

Consider a Furopean call option with the strike price K, whose terminal payoff is given by max(St—
K,0). Here, St denotes the asset price at option’s maturity 7". From the payoff structure of the
call, it is intuitive to compare the call with a portfolio which consists of long holding of one unit
of the underlying asset and short selling of a riskless bond with par value K and same maturity as
that of the option. The terminal payoff of the above portfolio is ST — K, so the portfolio gives only
a partial replication of the terminal payoff of the European call. This is because the portfolio and
the call have the same terminal payoff only when the call expires in-the-money or at-the-money,
correspondingly to St > K. The terminal value of the portfolio falls below that of the call option
when St < K, that is, the call expires out-of-the-money. A partial replicating portfolio whose
terminal value always stays equal or below the terminal value of the derivative to be replicated is
said to be a sub-replicating portfolio. We normally choose a sub-replicating portfolio whose value
is readily obtainable. The pricing of the call option then amounts to the determination of the
additional premium for acquiring extra assets on top of the sub-replication that are required to
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achieve the full replication of the call. This additional premium is termed the replenishing premium.

The loss incurred to the writer of the call at maturity when the sub-replicating portfolio is
employed to hedge the option’s risk is given by the difference in the terminal payofts of the call and
the sub-replicating portfolio. This difference equals K — St if St < K, and zero if otherwise. The
writer is required to use additional assets to protect against the above loss scenario. In this case, we
observe that the instrument required to replenish the mis-replication is simply the put option with
strike K and same maturity date T'. Let ¢ denote the current time and write 7 = T'—¢. This comes
no surprise since this is just the manifestation of the put-call parity relation. The replenishing
premium is the value of the put.

For the purpose of enhancing analytic tractability in the derivation procedure, it is preferable
that we write the replenishing premium in an integral form that involves the probability distribution
function rather than the probability density function. Consider

put value = ¢ " FE {(K - ST)l{STgK}}

(1) — e / (K = 51) L5, 012k} dP(),

where r is the constant riskless interest rate, E is the risk neutral expectation operator, 1{ Sr<K}
is the indicator function for the event set {St < K} and dP(w) is the probability measure over the
domain set €2 for the random variable S7. Applying the relation

K
(2) (K = 57) 1 (sp.(0)<xy A Lispw<ey dé,

we obtain

K
put value = G_TT// 1{ST(w)§§} dédP(w)
QJo
K
= e‘”/ /1{ST(w)§§} dP(w)d¢ (by Fubini’s theorem)
0 Jo
_ e—”/ Pu(Sr < & < K) dg
0
K
3) e / Pu(Sy <€) de.
0

It may be instructive to provide the following financial interpretation for the above formula.
First, we divide the interval [0, K| into n subintervals, each of equal width A¢ so that nA¢ = K.

The put can be decomposed into the sum of n portfolios, the jth portfolio consists of long holding
a put with strike jA{ and short selling a put with strike (j — 1)A¢, 5 = 1,2,--- ,n, where all

puts have the same maturity date 7. To the leading order in A&, the value of the jth portfolio is
{(GAE = S7) — [(7 — 1)AE = S7]} P (ST < &), & = FAE. Taking the limit n — oo and A — 0, we
obtain

(o)

K
(4) put value — ¢~"7 Y " P(ST < §)AE = 777 / P (St <€) de.
=1 0



These n portfolios can be visualized as appropriate replenishments to the sub-replicating port-
folio so that the writer of the call option is immunized from possible loss at the maturity of the
option. To refine the argument, we examine the role of each of the n portfolios. With the addition
of the nth portfolio [long a put with strike K and short a put with strike (K — A¢&)] into the
sub-replicating portfolio, the writer faces a loss only when St falls below K — A&. Deductively,
the protection over the interval [(7 — 1)A¢, FAE] in the out-of-the-money region of the call is gained
with the addition of the jth portfolio. One then proceeds one by one from the nth portfolio down
to the 15 portfolio so that the protection over [0, K| is achieved. With the acquisition of all these
replenishing portfolios, the writer is immunized from any possible loss at option’s maturity even the
call expires out-of-the-money. The cost of acquiring all these n portfolios is called the replenishing
premium, and its value is given by the integral in equation (3).

A new viable approach in derivative pricing then emerges. The value of an option is given by
the sum of the value of the sub-replicating portfolio and the replenishing premium. The pricing of
an option amounts to an ingenious choice of the sub-replicating portfolio and the construction of
the appropriate replenishing strategy.

The choice of the sub-replicating portfolio is not unique. Suppose the writer of the call option
chooses the sub-replicating portfolio to be the null (empty) portfolio, then the replenishment is
obtained by taking the collection of infinitely many portfolios, where the jth portfolio consists of
long holding of a call with strike K + jA¢ and short selling of a call with strike K + (7 +1)A¢, j =
1,2,---. The replenishing premium is given by

replenishing premium = e~ Z P.(S7 > K + jA AL
j=1

. e—”/OOPT(ST > &> K) de
0

(5) . / T p(Sr > €) de.

K

Since the sub-replicating portfolio has been chosen to be the null portfolio, the call value is then
equal to the replenishing premium as defined in equation (5).

In the above formulations, it is not necessary to restrict the random asset price process to the
usual lognormal process. Provided that P,.(St < &) or P.(St > &) for the specified asset price
process is given, the integral in equation (4) or equation (5) can be evaluated accordingly.

2.2 One-asset fixed strike and floating strike lookbacks

In this subsection, we would like to demonstrate the robustness of the sub-replication and replen-
ishment approach by pricing the European style one-asset floating-strike and fixed-strike lookback
options under continuous and discrete monitoring of the extremum value of the asset price process.
Our derivation procedure will be seen to be more direct, intuitive and simple compared to earlier
methods reported in the literature (Conze and Viswanathan, 1991). The experience gained in the
one-asset pricing models will be beneficial to the development of efficient pricing procedures for the
multi-state lookback options.

Continuously monitored floating strike lookback call options
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We let [Ty, T] be the continuously monitored period for the minimum value of the asset price
process. It is assumed that the current time ¢ is within the monitoring period so that Ty <t < T,
and that the period of monitoring ends with the maturity of the lookback call option. Let S,
denote the asset price at time u, Ty < u < T. Let S[t1, 2] denote the realized minimum value of
the asset price over the period [t1,%2]. The terminal payoff of the continuously monitored floating
strike lookback call option is given by

(6) Cfg(ST7 T) = ST — ﬁ[TmT]

Note that the realized minimum value of S,, from the earlier time 75 to the current time ¢ (denoted
by S[1,t]) is already known. It is seen that

ﬁ[Tm T] - mm(ﬁ[Tm t] ) i[t T]) (7)

Here, S[t,T] is a stochastic state variable with dependence on Sy, u € [t,T].

First, it seems natural to choose the sub-replicating instrument to be a forward with the same
maturity and delivery price S[Tp,t]. The terminal payoff of the sub-replicating instrument is below
that of the forward only when S[t,T] < S[Tp,t]; otherwise, the terminal payoffs of the forward
and lookback call are equal. Here, S[t,T] is the random variable that determines the occurrence
of under replication. Following similar argument as in equation (4), except that St is replaced by
S[t,T], the required replenishing premium to compensate for the occurrence of under replication is

given by
replenishing premium = e’ Z P.(S[t, T] < &§5)AE
=1
S[To,t]
(8) = / P(S[t,T] <€) dE.
0

The replenishing strategy is to purchase a series of portfolios so as to gain protection in the in-
terval where S[t,T] < S[Tp,t]. The value of the continuously monitored European floating strike
lookback call option at the current time is given by the sum of the sub-replicating portfolio and
the replenishing premium. This gives

S[To,t]
cpe(S, 4, 8[Th, 1)) = S — e S[To, t] + 6_”/ P.(8]t,T) <¢) d¢
0
S[To,t]
) L e / PuSILT] > €) de,
0

where S is the current asset price and S — e~ "7 S[Tp, 1] is the current value of the forward with
delivery price S[Tp,t] and maturity date T. The probability P.[S[t,T] > &] is related to the
distribution function for the restricted asset price process with the down barrier &.

The choice of the sub-replicating portfolio is not unique. Suppose we choose the sub-replicating
instrument to be a European call option with the same maturity and strike price S[Tp,t], the
terminal payoff of this sub-replicating vanilla call is below that of the floating strike lookback call
only when S[t, 7] < min(St, S[T,t]). To apply the formulation as stated in equation (3), we take
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S[t,T| as the stochastic state variable that determines under replication or otherwise at maturity.
Now, the effective strike price is the stochastic quantity min(St, S[7p,t]) [note that the same role
is taken by K is equation (3)]. The required replenishing premium is then given by

replenishing premium = G_TT/ P.(S[t,T] < & < min(Sp, STy, t]) d¢
0
SlTo.1]
(10) - e—”/ P(S[t,T] < € < Sr) de.
0
Let ¢(S,t; S[Tp,t]) denote the current value of the Furopean vanilla call with strike S[7p,¢]. Tt is

seen that

S[To,t]

(11) cre(S, 45 8[To, t]) = (S, 5 5[To, t]) + G_TT/ P (S[t,T] < £ < S57) d€.
0
By making use of the relations
S[To,t]
(12a) o(S, 4 S[Ty, 1]) — S — S[Th, ™™™ + =" / Pu(Sy < &) de
0
and
(126) PS(1,T) < € < 87) = Po(S(1,T) <€) = Po(S1 < ©),

we observe the equivalence of the two price formulas for the floating strike lookback call as given
in equations (9) and (11).

Garman (1992) interpreted the replication of the floating strike lookback call by the rollover
strategy that involves the sale of a call with a higher strike and the simultaneous purchase of another
call with a lower strike. He argued that whenever a new realized minimum value of the asset price
is established at a later time, one should sell the original call option and buy a new call with the
same expiration date but with a strike price equal to the newly established minimum value. Since
the call with a lower strike is always more expensive, some extra cost should be charged for the
buyer of the lookback call for holding this strike bonus right. It is interesting to see that the strike
bonus premium happens to be the replenishing premium defined in equation (10).

Continuously monitored fizved strike lookback call option

Let St1,t2] denote the realized maximum value of the asset price over the period [ti,%2]. The
terminal payoff of the continuously monitored floating strike lookback call option is given by

(13) iz (ST, T) = (S[Ty, T) — K)*t
z ifx>0
where K is the strike price and z1 signifies 0 if 0 When the fixed strike lookback call
tr<

expires at-the-money or in-the-money, S[7p, 7] > K, the terminal payoff can be expressed as
(S[Ty,T) — St) + (ST — K), which is the sum of the terminal payoffs of a floating strike put and
a forward on the same asset having delivery price K. It then becomes natural to choose the sub-

replicating portfolio to be the sum of the European floating strike lookback put and the forward.
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Since S[Ty, T| > S[Tp, ], the fixed strike lookback call is guaranteed to expire in-the-money if it
is currently in-the-money. Therefore, when S[Tp,t] > K, the sub-replicating portfolio is guaranteed
to be a full replication. On the other hand, when S[Tp,¢] < K (the fixed strike lookback call is
currently out-of-the-money), the sub-replicating portfolio would expire with payoff below that of
the fixed strike lookback call when S[Ty, 7] < K. Similar to the reasoning as that used in equation
(8), when S|Tp, t] < K, the replenishing premium to compensate for under replication is given by

K
replenishing premium = e~ "7 / P,(max(S[Ty,t], S[t, T]) < &) dé
0

K
(14) _ e / P,(S1t,T] <€) de.
S[To,t]

If we write pss(S,t; L) to denote the current value of the continuously monitored European floating
strike lookback put option, where L denotes the current realized maximum asset value, then the
above replenishing premium can be expressed as pse(S,¢; K) — pre(S, t; S[To, t]).

In summary, the current value of the continuously monitored European fixed strike lookback
call option is given by

(i) S[Ty,t] > K
(15@) Cfm(57t;§[To7t]) :pfé(57 t;g[Tovt]) +5—Ke
(i) S[To,t] < K

(15b) crie (S, S[To,8]) = pre(S, 6, K) + 5 — Ke™ ™.

Discretely monitored floating strike lookback call options

Suppose the monitoring of the minimum value of the asset price takes place only at discrete instants
t;,7=1,2,--- ,n, where t,, is on or before the maturity date of the lookback call option. Suppose
the current time is taken to be within [tx,?r11). The terminal payofl of the discretely monitored
floating strike lookback call option is given by

(16) ¢t (57, T) = S —min(S,, Sty -+ 5 St,)-

We use the notation S[i, j] to denote min(S,, Sy, ,, -+, 5%,),j > 4. At the current time, S[1, k] =
min(Sy,, Siy, -+, 5, ) is already known. Similar to the continuously monitored case, we choose
the sub-replicating instrument to be a forward with the same maturity date 7" and delivery price
S, k].

If S[1,k| < S|k +1,n], then the forward expires with the same payoff as that of the discretely
monitored European floating strike lookback call; otherwise, the sub-replicating forward expires
with payoff below that of the lookback call. Similar to the continuously monitored case, the
replenishing premium to compensate for under replication is given by

(o)

(min(S[1, k], S|k + 1,n]) < &) d¢

replenishing premium =

S(k+1,n] <€) d.

fon
S[1, k]
A



The probability function P.[S[k + 1,n| < £] involves the joint distribution of the n — k asset prices
at tx41, -, tn. The value of the discretely monitored Furopean floating strike lookback call option
is then given by

. S[1,k]
(18) (S, S[1K]) = S — e T S[1, K] + e—”/ Pu(S[k 1 1,n] < &) de.
0

3. Lookback spread options

In this section, we would like to apply the technique of sub-replication and replenishment to derive
the price formulas of the one-asset and two-asset European lookback spread options. Traders may
use the lookback spread options to hedge an existing position that is sensitive to price volatility or
to bet on price volatility.

3.1 One-asset lookback spread option

The terminal payoff of an one-asset lookback spread option is given by
(19) cop(ST, T3 K) = (S[To, T — S[Tp, T) — K) 1,

where ?(Tm T) and S[Ty,T] are the realized maximum value and minimum value of the asset price
over [Ty, T], and K is the strike price. From the above terminal payoff structure, a convenient
choice of the sub-replicating portfolio would consist of long holding of European lookback call and
lookback put, both of floating strike, and short holding of a riskless bond of par value K, all of
them have the same maturity as that of the lookback spread option. The terminal payoff of the
sub-replicating portfolio is STy, T| — S[Ty, T] — K. It is observed that

S[TmT] —ﬁ[TmT] —K = max(S[T07t]7S[T07T]) —min(ﬁ[Tthﬁ[tT]) - K
(20) ZE[TOJ] —Q[Toﬂf] _K7

so the lookback spread option is guaranteed to expire in-the-money if it is currently in-the-money.
In this case, the sub-replication is a full replication since the terminal payoffs of the sub-replicating
portfolio and the lookback spread option are equal. However, if the lookback spread option is
currently out-of-the-money, the terminal payoft of the sub-replicating portfolio would be less than
that of the lookback spread option if the lookback spread option expires out-of-the-money, that is,

(21) max(S[To, t], S[t, T]) — min(S[Tv, t], S[t, T]) — K < 0.

Suppose we treat max(S[7p, t], S[t, 1) as the stochastic state variable that determines under replica-
tion or otherwise, and min(S[7y, t], S[t,T])+ K as the effective strike price, the required replenishing
premium is then given by

replenishing premium = G_TT/ Pr(max(S[Ty,t], S[t, T]) < & < min(S[Ty, t],S[t, T]) + K) d€
0

S[Totl+K
(22) ! P(SIt,T) < € < SIt, T) + K) de.
S[T():t]



In summary, the current value of the one-asset European lookback spread option is given by

(1) S[T07t] —ﬁ[Toﬂf] -K=>0
(23@) Csp(57t;§[T07t]7§[To7t]) - Cff(Svt;i[Tovt]) +pf€(57t;§[T07t]) —Ke 7
(i) S[To,t] — STy, t] — K <0

csp( S, t; ST, 1], S[T, 1)) = cre( S, t; S[To,t]) + pre(S,t;S[Th,t) — Ke '™

S[To,t]+K _
(23b) e / Po(S[t, T <€ < S[t, T + K) dé
S[Tozt]

3.2 Two-asset lookback spread option

Let S, and S, denote the price process of asset 1 and asset 2, respectively. Similarly, we write
S1[t1,t2] and S,[t1, 2] as the realized maximum value of 51, and realized minimum value of S
over the period [t1,?2], respectively. The terminal payoff of a two-asset lookback spread option is
given by

(24) Csp(Sl,T752,T7T; K) - (§1 [T07T] - §2[T07T] - K)+7

where K is the strike price. Since we can express S1[To, T] — S5[To, T] — K as (S1[To,T] — S1.1) +
(S2,7—S85[1o, )]+ 51,7 —5,17— K, so a natural choice of the sub-replicating portfolio would consist
of long holding of one European floating strike lookback put on asset 1, one European floating strike
lookback call on asset 2, both of floating strike, 1 unit of asset one and short holding of one unit of
asset 2 and a riskless bond of par value K. All instruments in the portfolio have the same maturity
as that of the two-asset lookback spread option.

Similar to the one-asset counterpart, the two-asset lookback spread option is guaranteed to
expire in-the-money if it is currently in-the-money; and under this scenario, the sub-replicating
portfolio will expire with a terminal payoff below that of the lookback spread option if the lookback
spread option expires out-of-the-money. Following the same argument as used in the one-asset
counterpart, the current value of the two-asset European lookback spread option is given by

(1) Fl[Tovt] _§2[T07t] - K > 0

Csp(S1, S2, 1 51[t0, T, Sa[To, 1)) = pre(S1,t; S1Tost]) + cre(Sa, ;S5 [Th, 1)
(25a) } 51— S — Ke T

(11) Fl[Toﬂf] —§2[T07t] —K <0

csp(S1, S2, 4, 51[To,t], So[To, t]) = pre(S1,t; S1[To, 1)) + cre(S2, t; S2[To, 1))
+ 5 =5, — Ke ™7

EQ[TO:tH’K _
(25b) + e‘”/ P.(S1t,T] <& < 8,08, T + K) d&.
S1[To,t]

Here, 51 and 5S> are the current value of asset 1 and asset 2, respectively.
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4. Semi-lookback options

The terminal payoff of the semi-lookback options depends on the extreme value of the price at one
asset and the terminal values of the prices of other assets. We further illustrate the robustness
of the sub-replication and replenishment approach by deriving the price formulas of two-asset and
multi-asset semi-lookback options.

4.1 Two-asset semi-lookback option
Let V2

2 (81, 80,t; 55[Ty,t]) denote the value of the two-asset semi-lookback option whose terminal

payoff is given by max(S2[To,T] — S1.r — K,0). Since we may write Sa[1p,T] — S17 — K =
(Sa[Ty, T] — Sa,7) + Sor — S1,7 — K, the sub-replicating portfolio is chosen to consist of long
holding of one European floating strike lookback put and one unit of asset 2, and short holding of
one unit of asset 1 and a riskless bond of par value K, all instruments having the same maturity.
The sub-replicating portfolio will expire with a terminal payoff below that of the two-asset semi-
lookback option if

(26) max(Sa[Ty, t]S2[t, T]) — S1,7 — K < 0.

Following similar argument as used in equation (22), the required replenishing premium is given by

replenishing premium = G_TT/ Pr(max(Sa[Ty,t], Sao[t, T]) <€ < S17+ K) d
0

(27) = G_TT/ Pr(gg[tT] <¢E< Sl,T + K) de.
S2[T0,t]

The value of this two-asset semi-lookback option is then given by
V2, 0i(S1, 82, 52(To, t] = pre(Sa, t; Sa[To,t]) + So — S — Ke™™”

(28) + e‘”/ Po(Salt,T] < €< S1,7+ K) d€.

Sz [To,t]

4.2 Multi-asset semi-lookback option

Let VT (51,52, -+ ,5n,t5[To,t]) denote the value of the multi-asset semi-lookback option
whose terminal payoff is given by max(max(S2 7, -+ ,Sn 1) — 5170, 7],0). From the terminal pay-
off structure, the value of the sub-replicating portfolio is given by .1 (Sa, -+, Sp,t) + cpo(S1, ¢
S1[To, t])— 51, where 2L (Sg, -+ -, Sy, t) denotes the value of the (n—1)-asset maximum call option
with zero strike. Under replication at maturity by the sub-replicating portfolio occurs when

(29) maX(S2:T7 T S”:T) < il [T07 T] - min(ﬁl [T07 t]v S1 [tv T])
Following analogous procedure as above,t he value of this n-asset semi-lookback option is given by

V?emi(517527 e 7Sn7t;§1[T07t] - Cn_l 527 e 7Sn7t) + Cfe(517t;§1[T07t]) - Sl

max (

S, [To,t]
(30) + G_TT/ Pr(max(Sa, -+ ,s,) <& <8t T]) dE.
0
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5. Conclusion

The novel approach of choosing a sub-replicating portfolio and subsequently devising the replen-
ishing premium for pricing exotic options has been developed in this paper. The robustness of
the approach has been illustrated through the pricing of several multi-state lookback options. We
observe that the use of an elegant financial intuition has significantly reduced the complexity in
the analytic pricing procedures of multi-state lookback options.
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Appendix

With the assumption of the lognormal distribution for the asset price processes, we list the proba-
bility distributions that occur in the lookback option price formulas derived in the paper. We let
oi,t = 1,2, denote the volatility of the asset price process S; The dynamics of S; is given by

dS;

[

(Al) :Tdt+0idZi7 7= 1727
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where dZ; is the Wiener process and dZ1dZs = pdt. Here, p is the correlation coefficient between
dZ, and dZy. We write X;(t) = In.S;(t) so that

(AQ) Xl(t) = oyt + UZ‘ZZ‘(t)7 = 17 27

o2
is a Brownian motion with drift rate a;, o; = r — 71 Further, we define
(A3) X, (t) = Olgnithi(u) and Xi(t) = Jax, Xi(u).

1. Probability distributions involving single asset

For notational simplicity, we drop the subscript for Xi(t), X1 (¢), X;(t),01 and o;.

L=

Po(X(t) >z, X(t) > 2) = G(z,z,ta)

(45)  P(X(1) > 2) = G(a,2,t;q)
(46) P(X(t) <7, X(t) < 2) = G(-2,-T,1; —a)
(A7) P(X(t) < 2) = G(~2, —2,t;—a)
P(X>2,X <y) = i pl2na(y—)]/o” { {N (y —ot —Uj_z(y - fﬂ))
v (:c — at ;12;%(3/ - 1’))}
_ 2o/o? {N (y —at — 2:\(;/%— z) — 21:)
(48) ._N(f—mffi%—@—zv}}

2. Probability distributions involving two assets
(a) Semi-lookback options
PT(Xl(t) > £17X1(t) > $17X2(t) < 1:2)

- Gsemi($17 $27£17t; Q, 0427[))

—x ot xo — anl 211;—1 —x T ot xo — anl
(0N (TR TR ) e (S )
(AlO) Pr(il(t) > £17X2(t) < $2) — Gsemi(ih$27£17t;a17a27p)
(A11) P(X1(t) <71, Xa(t) < 21, Xo(t) < 22) = Gemi(—z1, T2, —T1, t; —av1, a2, —p)
(A12) Po(X1(t) <1, Xo(t) < 22) = Gsemi(—T1, T2, —T1, t; —aq, ag, —p)

(b) Double-lookback options

P (X1(t) < z1, Xo(t) < ) = Go(z1, 22, t; 01, a2, p)

(Al?)) _ 66l1271+(12z2+btf(7,,/7 Qlt)
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102 — P20 Q201 — p102
where a4 = o) ay = —————
(1 )0t (1= %0103

1 59 1 59

b= —aja1 — agag + §Ula1 + poiosaias + 502a2

2 & [ nwl 2 o . [ nmb
f(r', 0 t) = o Zsm (7) e /2t/ sm( — )gn(Q) de
n=1

0

= /
gn(Q) /0 re—ﬂ/2t6—b1rcos(9—a)—b2r Sin(e_a)f(m)/a (1) dr
1/2
oL (R
\/m 01 0102 o5

T p .
0— " tana——L o —aqt
COS or an &« \/m (8% o + 2

by = a101 + azoop, by = asoo/1 — p°.

(A14) Pr(X1 < 1, Xo(1)
(A15) Pr(Xy > 71, Xo(1)

Go(z1, —w2,t; 00, —p, —p)

G2(_$17 —T2, ta —Qy, —Qg, _p)
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