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Abstract

We formulate a general framework to price various forms of multi-asset barrier options and occu-
pation time derivatives with one state variable having the barrier feature. Based on the lognormal
assumption of the asset price processes, we develop the splitting direction technique for deriving the
joint density functions of multi-variate terminal asset prices with provision of barriers. Compared to
the reflection principle in statistical approach and the method of images in partial differential equa-
tion approach, our formulation greatly facilitates the derivation of the price formulas of multi-asset
barrier options and occupation time derivatives. By following a unified procedure, we illustrate
that the multi-asset option price formulas can be deduced in a systematic manner as extensions
from those of their one-asset counterparts. Our formulation has been successfully applied to derive
the analytic price formulas of multi-asset options with external two-sided barriers and sequential
barriers, multi-asset step options and delayed barrier options.

1. INTRODUCTION

Barrier options have become so popular in the financial markets that they are no longer considered
as exotic options. The inclusion of a barrier provision in the option contract allows the investor to
eliminate those unlikely scenarios as viewed by herself, thus achieving option premium reduction.
The analytical valuation of the down-and-out call option first appeared in the seminal paper by
Merton (1973). Since then there are numerous articles which consider the pricing of different forms
of barrier options (Rubinstein and Reiner, 1991; Rich, 1994). The barrier provision may take more
exotic forms, such as two-sided barriers (Kunitomo and Tkeda, 1992), sequential barriers (Sidenius,
1998) and external barrier (Heynen and Kat, 1994).

The barrier feature is well known to have the undesirable “circuit breaker” effect. When
evaluated at the barrier, the barrier option’s delta is discontinuous and option’s gamma tends to
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infinite value, thus causing serious hedging difficulties for option writers (Linetsky, 1999).

Gradual knock-out options are introduced to modify the abrupt one-touch knock-out feature
in traditional barrier options. These options are parameterized by the occupation time, which
is the total time spent by the asset price process staying in the knock-out region. Hence, these
gradual knock-out options are also called occupation time derivatives. The improvement from the
risk management perspective of these occupation time derivatives over the one-touch barrier option
is well explored in Linetsky’s paper (1999). Using the technique of Laplace transform, Linetsky
obtained the analytic formulas for these one-asset gradual knock-out options. The price formulas
of other one-asset occupation time derivatives were also obtained by Douady (1998) and Hugonnier
(1999).

Option models which are multi-variate in nature are abundant in the financial markets. For
multi-state options, the option value is determined by the stochastic behaviors of several underlying
asset price and / or stochastic variables (like interest rates) and the correlation coefficients between
these stochastic quantities. Under the Black-Scholes assumption of lognormality of the asset price
processes, the option value is governed by a multi-dimensional parabolic diffusion type equation.
Unlike the usual diffusion type equations, the multi-dimensional Black-Scholes option equation
contains second order cross derivative terms due to the non-vanishing of the correlation coefficients
among the stochastic state variables.

The analytical valuation of the option price function amounts to the determination of the
transition density function of the terminal asset prices conditional on the values of the current
asset prices. For most one-asset barrier option models, the transition density functions can be
found quite easily using the reflection principle or the method of images. For multi-state models,
the transition density of the terminal asset prices for the unrestricted processes can be obtained
without great difficulty. However, the integration of the expectation integrals can be quite tedious.
By following an ingenious method of choosing a set of appropriate similarity variables, Johnson
(1987) managed to obtain the price formulas for various European multi-asset vanilla option models.
The price formulas of multi-asset options with one-sided external barrier have also been obtained
by Heynen and Kat (1994), Rich and Leipus (1997) and Kwok et al. (1998).

It is almost analytically intractable to price the multi-state occupation time derivatives by
extending the techniques used by Linetsky (1999), Douady (1998) and Hugonnier (1999) in their
pricing frameworks for one-asset option models. In this paper, we formulate the splitting direction
technique to derive the transition density functions of the restricted asset price processes associated
with the presence of barriers. With this robust formalism, one can deduce in a straightforward
manner the price formulas for the multi-asset version of occupation time derivatives from those of
their one-asset counterparts.

The paper is organized as follows. In the next section, we state the theorems which formulate
the splitting direction technique. The various forms of splitting are achieved by taking suitable
forms on the transformation of the dependent and independent variables. In Section 3, we apply
the splitting direction technique to derive the price formulas of multi-asset options with two-sided
barriers and sequential barriers. These price formulas are represented in the most succinct forms.
In Section 4, we develop the general pricing methodology for occupation time derivatives with
separable barrier variable and payoff variables. The paper ends with conclusive remarks in the last
section.



2. FORMULATION OF THE SPLITTING DIRECTION TECHNIQUE

It is well known that the presence of the drift terms in the governing equation of a multi-asset
option model is the primary source of complication in the derivation procedure of finding the
fundamental solution of the differential equation. In this section, we present several theorems
which show how to decompose the governing equation into simpler structures. Theorem 1 states
the result on the use of a transformation on the dependent variable such that the governing equation
is reduced to one without the drift terms. Next, the splitting direction technique is summarized
in Theorem 2. By adopting an appropriate transformation of the independent variables, we can
split the dependent variable as a product of two dependent variables, one is dependent on single
independent variable and the other is dependent on the other remaining independent variables.
An important mathematical identity that is useful in the derivation procedures in later sections
is obtained as a corollary of Theorem 2. Lastly, a generalized form of the Girsanov Theorem is
presented in Proposition 3.

Theorem 1 (Separating the drift terms)

If ¢ satisfies the following forward Fokker-Planck equation governing the density function of multi-
variate unrestricted joint normal processes with drifts

(21) Zzpwaxax Zﬂja t>0,—00<.’1,']<00,]:1’2,’n’

=1 j=1
then ¢ can be decomposed into the product of @@ and v
(2.2) ¢=Qy

where

B (x —ut)TR Y (x — ut) —xTR™'x
@ =oxp (_ 2% )
pR (x—€é—pt)"R ' (x—&—pt) - (x—€&"R™'(x - §)
(2.3) = e Sexp (_ 2 ) ’

and 1) satisfies the following simplified diffusion equation without the drift terms
(2.4) 8t 212_:;_:”% o, t>0,—00 <zj <00, j=1,2,-+-,n

Here, x = (z1---&n)T, 0 = (1 - - fin)T, R is the correlation coefficient matrix whose (i, 7)™ entry
is pij, 4,5 =1,2,--- ,n. The vector £ in Eq. (2.3) can be chosen arbitrarily.

The proof of Theorem 1 is argued as follows. The factor () can be considered as a transfor-
mation on the dependent variable ¢. In order to eliminate the drift terms in Eq. (2.1), the usual
procedure is to seek a transformation of the form

(2.5) P(x,t) = P T TTIPRIT Ly (x 1),
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Rather than deriving () by resorting to the direct substitution into the governing equation, we apply
the following argument to deduce an elegant representation for (). The free space fundamental
1 1 Tr-1
solution of Eq. (2.4) is 9(x,t) = CORE \/mexp (—¥> while that of Eq. (2.1) is
1 1 x — pt) TR (x — pt
b(x,t) = /2 exp _( ) ( )
(27Tt)n Vdet R 2t
observe the relation (2.5), and taking their ratio leads to the first form for @ in Eq. (2.3). The
second form for ) contains the dummy vector variable £. This particular form is useful when we

. These two fundamental solutions must

apply a shifting transformation on the independent variable x.

Theorem 2 (Splitting direction technique)

If ¢, satisfies the forward Fokker-Planck equation with semi-infinite range in the first independent
variable

n

3¢n 1 ~ PP 3¢n
- ZZ Pij 8xi8:v Z J

=1 j5=1
(2.6) t>0,bl<$1<OO,—OO<$j<oo,j:2,---,n,

then the following linear transformation of the independent variables

71 ifj=1
(2.7) zj = LI PUTL i 93,

leads to the splitting of ¢,, in the following sense
(2.8) bn(z1, 22, 20, t) = G1(z1, 1) n—1(22,+ , 2, B).
The reduced functions ¢1(z1,t) and ¢,—1(22,- - , 2, t) satisfy, respectively, the following equations

01 10%¢1 Oy
ot 292 Moz

Bn ~ 0%, _ N .
(2.10a) ¢ 1:_22% ¢ I—Z,Uj ¢ 1, t>0,—00<zj<00,j=2,---,n,
j=2

i=2 j=2 07i0z; 0z;

(2.9)

t>0,b; < 21 < o0,

where

(2.100) b = LU Pl and Ji; =B ZPUHBL 593 n

plj - 2 5 5 ’
\/(l_pli)(l_plj) \/1—013'

This splitting direction technique is particularly useful to deal with multi-state option models where
only one state variable (say x1) has the barrier feature. Now, the barrier variable z; (z1 = z1 as
defined) is uncorrelated with zs,--- , 2,, by virtue of the transformation given in Eq. (2.7). The

proof of Theorem 2 is given in Appendix A.



Corollary
Let 9, (x,t; R) denote the fundamental solution of Eq. (2.4), that is

1 xTR_lx)
2.11 n(X,t; R) = exp| ———— ).
(21 bt R) = G ae R p( 21

Write Z = (22---2,)T, where zy,--- ,2, are related to z1,---,z, by Eq. (2.7); and R is the

(n —1) x (n — 1) correlation coefficient matrix whose entries are p;;,4,j = 2,--- ,n. We then have
(2.12) P (x — aReq, t; R) = 1(21 — o, 1)1 (2, t; ﬁ) det J,
1 T 8(2’1,2’2,"' 7zn) . .
where « is any scalar, e; = (1,0---0)" and J = . For its proof, see Appendix B.
6(1‘1,]32, T ,J)n)

Proposition 3 (A generalized form of the Girsanov Theorem)

Let X (t) = (X1(t)--- X, (t)) be a vector of Brownian motions under the probability measure P,
with unit variance rate, that is,

(2.13) dP,, = 9,(X,t: R) dX.

Here, 1,(X,t; R) is the fundamental solution as given in Eq. (2.11) and R is the correlation
coefficient matrix. For any constant A\, the new vector defined by X + AtRej is then a vector of
Brownian motions under a new probability measure QF that satisfies the following Radon-Nikodym
derivative

k 2
(2.14) Zg" = exp (—)\Xk(t) — %) .

The proof of Proposition 3 is given in Appendix C.

3. MULTI-ASSET OPTIONS WITH EXTERNAL TWO-SIDED BARRIERS

We consider the class of multi-asset option models with an external barrier variable. The barrier
variable does not determine the payoff of the option. Rather, it determines whether the option is
knocked out when the value of the barrier variable breaches some pre-determined level (one-sided
barrier) or stays outside a certain range of values (two-sided barriers).

The valuation of multi-asset options with an external one-sided barrier has been considered
by Heynen and Kat (1994), Rich and Leipus (1997) and Kwok et al. (1998). In this section, we
illustrate how to apply the formalism in Section 2 to derive the price formulas of multi-asset options
whose external barrier variable has two-sided barriers.

Let SY denote the value of the barrier variable and S? denote the value of asset 4,1 = 2,--- ,n,
at time ¢t. For the multi-asset maximum call option with an external barrier, the terminal payoff
is given by max(max(S%,---,S8%) — X,0), where X is the strike price. We adopt the usual Black-

t

Scholes assumptions on the capital market. In the risk neutral world, we assume S},7 =1,2,--- ,n

to follow the lognormal diffusion processes

dst
St

K2

(3.1)

=rdt+o;dz, 1=12,---,n,



where r is the riskless interest rate, o; is the volatility of asset i, dz; is the Wiener process for asset

i,9=1,2,--- ,n. Let p;; denote the correlation coefficient between dz; and dz;. We define
2
1. St r—2
(3.2) zi=—In=t and pu; = 2 i=1,2,---,n,
g, S o;
where S;,i =1,2,--- ,n are the asset values at the current time (taken to be the zeroth time). Let

H and L denote the upstream and downstream barriers of the barrier variable. The call option
will be knocked out when St > H or S{ < L at any time ¢ during the life of the option. We define

1. H 1 L
M =—ln—andm ln—
1 S 1= S
Joint density function with provision of two-sided barrier levels
Let ®(z1, 22, -+ , %y, t; R) denote the density function of the joint process of the asset prices and
barrier variable with the provision of two-sided barrier levels on z1,m1 < z1 < M. To find
b(x1, 22, ,Tpn,t), we apply the splitting direction technique presented in Section 2. First, we

consider the following one-dimensional diffusion equation

0¢1 _ 10°
ot 2 02’

(33) my < x1 < My, t>0.

Its fundamental solution is known to be (Kevorkian, 1990)

(34:) ¢1 .’L'l, Z [1/)1 r1 — Qk(Ml ml) ) — ’tﬁl(.’L'l — 2k‘(M1 — ml) — 2m1,t)],

k=—o00
2

1
ex
Vot p( 2t

solution to the following n-dimensional diffusion equation

where 9 (z1,t) = ) By applying Theorem 2 and its Corollary, the fundamental

0 1
(3.5) ¢": ZZp”aaj -, m1 <21 < Mi,—00<z; <00,j =2, ,n,1>0,
7/
=1 j=1

is given by

bn(x,1) = Y [th1(21 — 26(My —ma), 1) — b1 (21 — 2k(My —my) — 2m, 1)]

k=—o00

Yn_1(Z,t; R) det J

3" [u(x — 26(M1 — m1)Res, t; R)

k=—o0

(3-6) — tpp(x — 2[k(M; —m1) — mi|Rey, t; R)],

where 9, (x,t; R) is defined in Eq. (2.11). Let ®(x,t; R) denote the fundamental solution to the
following n-dimensional Fokker-Planck equation

0P 1w 0%d L 9D
ETRRED IO F v rriad DLTF et
=1 j=1 j=1
(3.7) my <z <M, —oo<z;<00,j=2,---,n,t>0.
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By applying Theorem 1 and choosing & to be 2k(M; — mi)Re; and 2[k(M; — my) — m1]|Re;
successively in the second form of @ in Eq. (2.3), we obtain

o(x,t;R) = Y {HFONmmy (x — 2k(My —my)Rey — pt, t; R)

k=—oc0

(3.8) — e2mk(Mh—mi)=mily, (x — 9[k(My —my) — mi]Rey — pt, t; R)}.

Option value of mazimum call with two-sided external barriers

Following the discounted expectation approach, the value of the multi-asset maximum call option
with two-sided external barrier levels H and L is given by

My
V(S1,S2, -+ ,S,,T) = e_’"T/ / b(z1,22,+ ,Zpn,T; R)
Dn—l

mi1
(3.9) max(max(S2e?2%2 ... | S, e’"") — X,0) dx,, - - - drodxy,
where T is the expiry time and D,,_; is the domain in the (n — 1)-dimensional (z2,--- ,z,)-plane
inside which max(S2e?2%2, ... , S,en®n) > X is satisfied. Correspondingly, we let D _; denote the
domain inside which Spe?¢** being the maximum among the n — 1 quantities Sze?2%2, ... | 5, e%n*n,

The representation of DY,_, is given by

o J =2 ,nbutj;«éﬁ},ﬁzz---,n.

The terminal payoff becomes Sye?¢*¢ — X inside the domain D¢ _;. The integral in Eq. (3.9) can
be decomposed into the sum of n — 1 integrals. The integration domain of a typical term I, is
[m1, My] x D% _,. Now, I, is formally represented by

o0 M1
L=e7" ) /m /D l (Spet®t — X))
1 n—1

k=—o00
[e2#1%k 4, (x — 20, Rer — uT, T; R) — €14, (x — 20, Re; — pT, T; R)]
(3.10) dzy, - - - dwadzy

with a = k(M7 —mq) and o) = k(M7 —mq) — my. To facilitate the integration in I, we apply
the following linear transformation of the independent variables: y* = A‘x, where

T1 ifj=1
—Ty ifj=1¢
(3.11) yh = ,
i (xj — ﬂxe) otherwise
O'jg O'j



with a?e = 032- —2pje0j00 + af. The integration domain for I, becomes
1.8
(m1, My) x Dy _ Z{(yf,yé,--- Wn) i <yi < Miyp= —Ing,
1 S,
yﬁ < — 2t j=2,---,n andj;«éé}.
aje S;
Also, we have
(x — 203 Re; — pT)'R™Y(x — 20, Re; — pT)
(3.12) = (y* — 2a,R%e; — A'uT)T(RY) 1 (y* — 2arRe; — A*uT),

where R = A‘RA*T. Consider the typical k" term in I, [see Eq. (3.10)]

My
I% :/ /De (See”™t — X)) (x — 2ax,Re; — pT, T R) dxy, - - - drodz

1

M, plnit Lin 3L Lt
:/ ' /Gu %2 D * D e S (Sge_”yf — X)
mi — o0 — 00 —00
(3.13a) $n(y" — 204, R'e; — A'uT, T; RY) dyy, - - dysdyf.

By applying the extended form of the Girsanov Theorem (see Proposition 3), we obtain

15 = Sem 2P N(dS — bl RY) — 2P0 N(dé — bl.; RY)]

(3.13b) — X[N(d{ — b%; RY) — N(d§ — bt; RY)],
where the 5™ component of df is
([ My /VT if j =1
1 Sy e .
——In— ifj=14¢
(3.14a) & ={ o/T X I :
1 Sy
——1In— otherwise
. O'Zj\/T S;
My —my My —my
3.14b)d§ = d¢ + 0,VTR,, di=di— ——— e, di=dj— ——— e,
( ) 1 e 74 1 Ul\/T 1 4 2 0'1\/T 1
20, R AtuT 20/, R AtuT
(3.14¢) bl = ot e\;%_ i , and bf, = i 6\1/%_ i ,£=2,--- n,k is any integer,

(3.14d) [rfj] =R'= AZRAZT, Bt =rtoa and  Bf = ré,o0k.

Finally, the value of the multi-asset maximum call option with two-sided external barrier is found
to be

V(81,85 50, T) = > D S {ePrort?h [N(df - bf; R) - N(df - bf; B)]
k=—o00 (=2

— ePmakt2 [N(d) — bf; BY) - N(d§ — bf; RY)] }
— X~ T {ePment28 [N(df — bf; R) — N(d§ — bf; RY)]

(3.15) — e2moi 260 [N(d! — b, RY) — N(d — b; RY)] } .
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Eztension to mazimum call with sequential external barriers

Unlike the two-sided barrier provision where the option is knocked out when the barrier variable
hits either H or L, the sequential barrier provision requires the breaching of the two barrier levels
at a pre-determined sequential order, say, up then down. For the one-asset case, given the asset
price S; at the zeroth time, the density function of the asset price S at time ¢ conditional on
non-breaching of the sequential barrier provision (first upstream barrier H then downstream L) is
given by (Sidenius, 1998; Li, 1999)

Gup—down (Z1,1) = [1(w1 — p1t,t) — 1 (w1 — 2My — pat, t)]

(316) — 6_2”‘1(M1_m1)[’lp1($1 + 2(M1 — ml) — Mlt,t) — ¢1($1 — 2m1 — Mlt,t)],
1. St g 1 H 1L
where 1 = — lns—l,ulz%,Mlza—llns—l and mq = lns—1

We cons1der the multi-asset maximum call option with an external barrier S, the terminal
payoff of which is gien by max(max(S%,---,S%) — X,0). This barrier call option is knocked out
only if S; hits the up-barrier H first then the down-barrier L afterwards, By following similar
derivation procedure as that for the two-sided barrier counterpart, the value of the multi-asset
maximum call option with sequential up-then-down barriers is given by

Vup-down(sla 527 Ut aSna T)
=3 e { PNl — b RY) — e+ N (ah - bly; RY)

e—zul(Ml—m1)+2ﬁ’;1[N(dg _ be_l;RZ) _ e2u1(M1—m1)+2ﬁf1fN(dg _ bz_l,;RZ)]}
— Xe ™" {N(d{ — bg; RY) — > N(df — b; RY))
— e OR[N (@]~ by RY) — %M N (df bR
where d¢,d%, 8§, 85, %1, %1/, b§, bS,, bY ;| and b’ |,, are defined in Egs. (3.14a,b,c,d).

4. MULTI-ASSET OCCUPATION TIME DERIVATIVES

An option is said to be an occupation time derivative if the terminal payoff depends on the terminal
asset prices and the occupation time associated with a barrier variable. In this section, we derive
the price formulas of several types of occupation time derivatives. We start with the review of
some of the results about the one-asset occupation time derivatives and examine how the pricing
formulation of the multi-asset models of occupation time derivatives can be inferred from their
one-asset counterparts.

4.1 Review on the results for one-asset occupation time derivatives

Let S% be a stochastic variable with the barrier level B. We assume that St follows the lognormal
diffusion process defined in Eq. (3.1). The occupation times of the stochastic variable S; below
and above the barrier level B from the zeroth time to time ¢ are random variables defined by

(4.1a) Th —/ H(B - 5%) du

(4.1b) rh= / H(S" — B) du,



respectively, where H(xz) is the Heaviside function. The occupation time of the stochastic variable
above (below) the barrier level B is the amount of the time that the value of the stochastic variable
stays higher (lower) than B. The derivatives of 7 and TE are given by

(4.2) drp =H(B—S%) dt and drf = H(SY - B) dt.

Consider an occupation time derivatives whose terminal payoff function takes the form F'(Si,
T75). Let V(S1,75,t) denote the derivative value at time t. Assuming the usual Black-Scholes
assumptions, the governing equation for V(S1,75,t) is given by (Linetsky, 1999)

oV o2 ,0°V ov ov

— 4+ LS5 — 4+ HB-5)— —1rV =

ot 9 1 85% +’I‘Sl 851 + ( 51)87_]_3 rV 0,
(4.3) t>0,0< 8 <oo,75>0.

Note that an additional term H(B — Sl)g—‘i is added in the usual Black-Scholes equation to

B
reflect the dependence of the derivative value on the occupation time state variable 75. We write
1 St 1
r1 = —1n El and £ = —1In El, where S; and S% are the respective asset prices at the current
o1 01

time (taken to be the zeroth time) and future time ¢. The transition density function (z1,75,t; 1)
satisfies the following forward Fokker-Planck equation

oy 10% oY oy -
4.4 S o oL S H(-m)——, —
44 o = 20m7 Mo U TX<m<eoTs >0
where 11 = —2-. The associated initial conditions at ¢ = 0 and Tp =0 are
01
(4.5) P(21,75,0581) = 6(21 — &1)d(7p) and (21,0, &1) = (21,15 61),

respectively. Here, ¥p(z,t,£) is the transition density function of the corresponding restricted
asset price process without crossing the down barrier B. The condition 7; = 0 is equivalent
to the situation where the asset price never breaches the down barrier B. Hence, the value of
Y(z1,75,t€1) at 75 = 0 is equal to ¥p(zr1,t;€1). Also, the initial condition ¥(z1,75,0;¢1) is
derived from the fact St and 73 start at ¢ = 0 with certainty at S; and zero value, respectively.
Linetsky (1999) obtained the solution to 9 (z1,75,t;&1) corresponding to the zero drift case
[that is, setting pu; = 0 in Eq. (4.4)]. The solution takes different forms in different domains €,
1 =1,...,4, namely,
1. Q; = {(.’El,fl) : 61 >0,z:1 >0 and 61 + x> O}

t—7 5 2
B o B 1+ & (z1+&1)
(46(1,) ¢ = Ul(xlaTBatv 51) - /0 27I'(t _ ’u,)3/2’U,3/2 exp (_T du.

2. QQ = {(.’51,61) Zf] S 0 and Ty > 0}
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B t—Tg I (1 - f_it) + 61 (1 - %) x% f%
(4.6b) Y =ua(z1,75,4:61) = /0 27 (t — u)3/2u3/2 exp (— - 7)> du.

3. Q3 ={(%1,&) : &1 > 0,21 <0}

(4.6¢) % =uz(w1,7g,t:&1) = ua(—x1,t — 75,1 —&1).

4. 94 :{(.’51,61) Zf] < O,iL‘l >0 and §1+.’E1 < O}

(4.6d) Y = ug(®1,7p,t61) = ur1(—z1,t — 73,1 —&1)-

When 75 =0 or 75 = t, we have

(4-66) P = wB(ﬂUlat;fl) = ;w [eXP (-W) — exp (—W)] ]

o~

Remarks

1. For the non-zero drift case, we can apply Theorem 1 to obtain the corresponding solution for
1. For example, with pu; # 0,u; becomes

t—1, 2
- _ B r1+6 (z1+£&1)
(470’) U1($1,TB,t,£1,/l) - Ql/() 27T(t — U)3/2’U,3/2 €Xp (_ 2 du7

where

(4.7b) Q1 = exp (— (21 = pt)” — ﬁ) .

2t

2. Suppose we count the occupation time starting at ¢, with ¢, < 0, that is, before the current
time. The accumulation of occupation time from ¢, to the current time is a known quantity
since it can be evaluated from the already known realization of the asset price path. The
terminal payoff of any occupation time derivative can be modified so that the payoff depends
on the occupation time counting from the current time to maturity. Without loss of generality,
it suffices to consider those cases where the counting of the occupation time starts at the
current time.

3. Successive Laplace transforms on 75 and t are applied to obtain the above solutions for
P(z1,75,t; &1). The imposition of the initial condition: (z1,0,%;&1) = ¥p(z1,t;&1) seems
to lead some complexity in the derivation procedure. Fortunately, ¥ pg(x1,t;&1) does not enter
into the equation for the Laplace transform function since the factor H(—xz1) becomes zero
when 75 = 0. This is because S? is guaranteed to stay above B when the occupation time 75
is zero.

11



4.2 Multi-asset occupation time derivatives

We would like to examine how the splitting direction technique can be applied to obtain the price
formulas for multi-asset occupation time derivatives. Let S% denote the value of the barrier variable
at time ¢ and B be the constant down-barrier level associated with St. We consider the pricing of
multi-asset options whose terminal payoff depends on the terminal asset values S7,--- ,S,q;, and
the terminal value of the occupation time variable. The occupation time variable 75 associated
with the barrier variable S? is defined by Eq. (4.1a).

We assume that the asset price processes S%,i = 1,2,--+ ,n, follow the lognormal diffusion
processes as defined in Eq. (3.1). Similarly, we define

i

(4_8) .’L'J: 1 j:2’-..’n,

t

J
ns)
where S;- and S; are the value of asset j at the future time and the current time (taken to be the
zeroth time), respectively. The valuation of a multi-asset occupation time derivative requires the
determination of the transition density function v (x, 75,t; &1) of the joint process of the asset values
and the occupation time, where x denotes the vector (z; z3---z,)?. The forward Fokker-Planck
equation that governs ¥ (x,75,t;&1) takes the form

= Zz%ax oz, Z Hig .~ xl)Ea

=1 j_
(4.9) —oo<a:j<oo,g:1,2,---,n,t>0,75>0-

Here, p;; is the correlation coefficient between dz; and dz;, and p; =

initial conditions at ¢ = 0 and 75 = 0 are given by
(410) d)(xa 7-1_3’ Oa 51) = 5(I1 - 51)5(1'2) U 6($n)(5(7-1_3) and ¢(x’ Oa t7 El) = ¢B (X, ta 61)7

where ¥ p(x,t;£1) is the transition density function of the joint process of S, S%,---, St with S¢
staying above B at all times.

The splitting direction technique stated in Theorem 2 can be applied to solve for ¥(x, 75, t; &1).
We employ the linear transformation of the independent variables as given in Eq. (2.7), and this
leads to the splitting of v(z,75,t;&1) = ¥1(21, 75, t:61)Yn—1(22,- -+ , 2n,t;€1). The procedure is
motivated by observing that the function in the boundary condition in Eq. (4.10) can be splitted by
the same linear transformation, i.e. ¥p(x,t;&1) = ¥p(21,t;€1)¥Yn—1(2,t). The governing equations
and auxiliary conditions for ¢ (z1,75,%&1) and 9,_1(22,- -+ , 2n,1;&1) are given by

opr 1 0% 0 01
R s T ==
’lp1($1,7’§,0'§1) = 5($1 - 51)5(7-5)7 Ilpl(mlaoat;fl) = szB("Lllat;é-l)’

(4.11b) 8¢n 1_—22 O n-s Zﬂja¢n_1, t>0,—00<zj<00,j=2,---,n,
j=2

Pij
2; Z;
i=2 j=2 020 0z;

(4.11a) t>0,75>0,—00 < 21 < o0,

¢n—1(ia 7—B )b 61) = 5(2)5
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respectively. The correlation coefficients p;; and the drift parameters z; are defined in Eq. (2.10b).

We let R"~! denote {(z2,...,2,) : —00 < zj; < 00,j = 2,...,n} and define the domains Q7,
i=1,...,4, to be O = Q; x R"~!, where Q,’s are defined in Egs. (4.6a-d). The solution to the
transition density function ¢ (x,75,t;&1) in different domain Q7

7,1 =1,...,4, are summarized in
Theorem 4.

Theorem 4

Let 1} be the solution to the joint transition density function t(x,75,%;&1) in the domain QF,
1=1,...,4. We have

(4.12) P(x,75,t:&1) = LiamyyT + Liapy¥s + Liany¥bs + Liamyy + [0(75) +6(175 — ¢)]95 .
where

(4.13)

t—Tg5 _ 2 9
YT —\/71% (x—&e1—pt; R t)/ (t_m;)—j;/glwexp ((361 2tfl) (= ;ufl) )du,

¥ =\ bl rer — it 1)

_ 2 2
=Ts [z1(1 - tg—lu) +&(1+ mu_l)] (71 — fl)2 x% §12
X 373 3/3 exp| —————— — — — du,
0 (t —u)3/?u 2t 2u  2(t—u)
¢?($1a$2a“' a$naT§at;§1) = ,(pg(_xlax%'“ awn’t TBJ ) 61)
’(/)Z(.'El,l'g,"' a$naTEat;£1) = 1/)?(_1.171‘2"" aw’nat TB) ) 61)

Yo = o (x — Ere1 — pt, 1 R) — 181 9h, (x — E1€1 — pt — 26, Rey, t; R),

where 9, (x, t; R) is the fundamental solution defined in Eq. (2.11).

Let V(Si,...,8n,T) denote the value of the n-asset occupation time derivative with the down
barrier B on S and payoff function P(x,75). The price function V(S1,...,S,,T) is given by

(i) S51> B
V(S1,...,5.,T)

(4.14a) = e"’T{/Rn_l /00o P(x,0)y5 dx+/0T /Rn_l /OOO P(x, 75 Y7 dxdrg

T 0
+/ / / P(x,75)s3 dxdTg};
0 R 1 J_—o
(i) S < B
V(Si,...,5.,7T)

(4.14b) :—rT{/R“/ PxT¢5dx+/ /R“/ P75 )t dxdrs
+/0T IR dxdfg}.
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In particular, we can apply the above formula to compute the price of the proportional step
options, simple step options and delayed barrier options (or called the cumulative Parisian options).
They are occupation time derivatives having payoff of the seperable form: f(75)G(x).

1. Proportional step option:

flrg) = e,

where s is called the killing rate.

2. Simple step option:

f(r5) = max(1 — s75,0).

3. Delayed barrier option:

where « is a parameter satisfying 0 < o < 1.

Theorem 5

Counsider the maximum call option with S as the external barrier variable and the associated occu-
pation time 75. Suppose the terminal payoff takes the separable form: f(75)max(max(Ss,---,Sp)
—K,0). The corresponding price formula of this n-asset occupation time derivative with the max-

imum call payoff is found to be

(i) 51> B
V(S1,...,5.,T)
= f(0) DOC™,X(S1,...,8,,T)

T [’} n

+/ F(T—TE) [/ (Z Skexp(—plkak(fl — I +M1T))N(gk,1 —CkﬂﬁRk,Rk)
0 0 k—2

n X . 8 ~
(4.15a) Y KeTN(g2 — CopV/T; Rk)) (1,7 =75, T;61) day
k=2 B

0 n
+/ (Z Sk exp(—p1kok (€1 — 21 + 1 T))N(ge1 — CreV'TRy; Ry)

% \k=2
- _ . A ou _ _
— > Ke"N(gp2— CeftVT; By) | ——= (1, T — 75, T;61)dér | dr
k=2 otg
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(i) S1< B
V(Sh,...,SnT)

_ /OTF(T—Tg)

- 5 0
- Z Ke "' N(gk,2 — CrftV'T; Rk)) aif(:vl,T —15,T;&) dz1 (4.15b)
T
k=2 B

/ (Z Sk exp(—p1kok(é1 — z1 + p1T))N(gr,1 — CyoV'T Ry; Ry,)
0 \g=2

0 n
—I—/ (Z Sk exp(—p1xon (€1 — z1 + p1T))N (g1 — CrtV'TRy; Ry)

X \k=2
= 0
—Y Ke ""N(gk2— CelV'T; Rk)) S (@01, T — 15, T;61) day | drg
k=2 07
where DOC™1(Sy,...,S,,T) denotes the price formula of the corresponding down-and-out maxi-
mum call option, and the functions u;,j = 1,...,4 are given in Eq.(4.6a-d). The other paramaters

are defined as follows:

gk,2 = (géC QZ)Ta gk1=Ggk2+ UkﬁRkeka Rk = CkRCga Q= (Mz : ",U'n)Ta

1 Sy )
In 2~ pip(zn — 1), —k
oVE K pik(z1 — &) J

1 ln&+(p1k0k_p1j0'j
TiRVT S Tjk

T—1g
F(T—TE):/O f(u) du.

(4.16) gk =
)(:cl —¢;), otherwise

The entries in the matrix Cj are given by

’_vl_p%ka ’L:]:k',
o .
—\l=pty,  i=iFk
(4.17) ck =24 "
Ok .
- 1- 2 ’ J= ka
T Pik
L 0, otherwise.

Remarks

For different types of occupation time derivatives with separable terminal payoff function, the
function F(T — 75 ) takes different forms.

1. Proportional step option

Ter— -

Ty 1 —es(T—75)

F(T —73) :/ edy =" "7
0



2. Delayed barrier option

oT, 0<75 <(1—a)T

T—7g
F(T—TE) :/ 1u<aT du
0

T—r5, (I-a)T<7t;<T

3. Simple step option

T—-1g4
F(T—TE)Z/ max(1 — su,0) du
0

1 1
il 0<r5<T—-=
2s’ =TB = s

1 .
(T —15) [1—%(T—T§)],T—;<T§ <T

5. CONCLUSION

Since option prices are given by the discounted expectation of the terminal payoff in the risk
neutral world, the derivation of the analytical price formulas of exotic option models amounts to
the analytical evaluation of expectation integrals. A typical form of the integrand in an expectation
integral is given by the product of the transition density function and the terminal payoff function.
For multi-asset barrier-type options and occupation time derivatives, the derivation of the associated
density function has been known to be mathematically challenging, due primarily to the presence
of the cross-diffusion terms in the Fokker-Planck equation. In this paper, we develop the splitting
direction technique which leads to a systematic derivation approach to find the density functions
of multi-asset option models from the extension of their one-asset counterparts. Analytic price
formulas of multi-asset options with external two-sided barriers and sequential barriers, multi-asset
step options and delayed barrier options are obtained in their most succinct forms.
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Appendix A - proof of Theorem 2

Let Vi = (O, - -+ 05,)T and let J denote the matrix representing the linear transformation between
x = (z1-2,)T and z = (21-++2,)T as defined in Eq. (2.7), that is, z = Jx. We have J =

Iz -
(z1,  2n) so Vyx = JV,. Also, we write . = (1 -+ - ptn)*. Now, Eq. (2.6) can be expressed as

8(-7717 Tt ,wn) ’
Obn 1
% = Eszvxqsn - “Tvxqsn
1
(A.1) :Evﬂﬂﬁﬂvww4ﬂmﬁvwm

Let p;; denote the (i, 7)™ entry of JTRJ and i denote the §* entry of JT . We observe that
1 ifi=j=1
(A.2) Pi=4{ 0 ifi=1j#lori#1,j=1
pij ifiFlj#1
4= pr g=1
ol AL

where p;; and ji; are defined in Eq. (2.10b). In terms of 23, -+, z,, Eq. (2.7) can be expressed as

Oy _ [10%¢, 3¢n - 0 n 3¢n
(4.3) ot [5 822 ] ZZP” 020z Z Hi'g

1=2 j=2
Suppose we decompose ¢,, into the form
(A4) d)n(zla 22, 5, 2n, t) = (151(2’1, t)¢n—1(z2a Tty %n, t)a

then ¢; and ¢,,_1 satisfy Eq. (2.9) and Eq. (2.10a), respectively.

Appendix B - proof of Eq. (2.12)

Let 11(21,t) and v, _1(z, t; ﬁ) denote the respective fundamental solutions to the following equa-

tions
oy 10%
(B.1) — =——", t>0,—00< 2z <00,
ot 28%
0 1 ", 02
(B.Q) wntlzi me T,bn 1 t>0,—OO<Zj<OO,j:2,---"n,_

Here, Egs. (B.1) and (B.2) are seen to correspond to Eq. (2.9) and Eq. (2.10a) with zero drift
terms, respectively. Similar to relation (2.8), the fundamental solutions 1, (z,t; R),v1(21,t) and

Yn—1(Z,t; R) are related by
(B.3) P (%, R) = 11 (21, )¥n_1(Z, t; R) det J.
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8(21,"' 7zn)

is included due to the change of the independent variable
8(:515 T ,.’L‘n)

The Jacobian det J = ‘

from x to z.

Suppose we apply a shifting transformation on x: X, e, = Xo1q — @Re;, where « is any scalar,
then Zpey = JXpew = J(Xoiqg — @Re€1) = z,qg — ae;. We observe that z,e, is obtained from z,4
by changing only the first component z; to z; — a while keeping all the other n — 1 components in
Z,1q unchanged. Accordingly, the relation for the fundamental solutions as stated in Eq. (B.3) is
modified as

(B.4) P (x — aReq, t; R) = 1(21 — o, t)n—1(2, t; ﬁ) det J,
where z and the Jacobian det J remain unchanged under this shifting transformation on x.

Appendix C - proof of Proposition 3

With no loss of generality, we prove the proposition for the case k = 1. We define a new vector of
Brownian motions Z by Z = JX, where J is the matrix representing the linear transformation of
variables defined in Eq. (2.7). We have

(C.1) dP,, = [th1(21,t)dz1)|[thn—1(Z, t; R)dz] = dP,dP,_1,

where 11 (21,1), ¥n-1(Z,t; ﬁ),'zv and R are defined in the same manner as those in Eq. (2.12). Note
that Z;(t) is a Brownian motion under the probability measure P;. Next, we define

(C2a) Wi(t) = Zu(t) + Mt

(C2b) Ll(t) = €xXp (—/\Zl(t) — %%)

where A is any constant. By the Girsanov Theorem, we deduce that W (t) is a Brownian motion

d
under the new probability measure ); that satisfies the Radon-Nikodym derivative % = Lq(1).
1

Accordingly, we define the probability measure Q1 by the property
(C.3) dQ;, = dQ1dP,—1 = L1 (t)dP,
which then gives the result in Eq. (2.14). On the other hand, dQ. observes

dQ;, = dQ1dP,_;
= b1 (W1 (t),t)dW1 ¢n_1(Z,t; R)dz
= Y1 (Z1(t) + M, ) pn_1(Z,t; R)dz
= (X + AtRey,t; R)dz (by Corollary of Theorem 2).

Hence, X + AtRe; is a vector of Brownian motions under Q..
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Appendix D - proof of Theorem 5

Suppose the terminal payoff function of the multi-asset occupation derivative is in the separable
form, i.e. P(x,75) = f(75)G(x). The integrals appearing in Egs. (4.14a,b) become

() S>B
r - T e T
(D.1a) V= f(O)DOC-l—/O F(T—TB)[/O /R G x) 2P ’TBT]EB’T’&) dx
+ /_ Ooo /R G 8¢§‘(X,Ta;§'r§ T é1)olx] drg,
Gi) S <B
(D10 - /OTF(T_TE)VO“’ /RH G(x)azﬁ?(x,Ta;Erg,T;&) I

0 n o .
N / / G0 28 (x,T(9 75, Ti&) dx] irs
—ooc J Rn—1 TB

In particular, we consider the maximum call option with the external barrier variable S; and
G(x) = max(max(S2e?2*2, ... ,S,e’"*») — K,0). As an illustration, we only show the evaluation
of the following typical integral

1_/ F(T —TB/ /G YT — 75,1560 g
Rn—1 8’7’3

(D.2a) :/0 F(T—-1g) / ZIkaul Z1, 6TBTB,T;£1) dzy dry;
where
(D.2b) I = /D [Ske”k(z’“m“‘p”“(“_&) - K] oz — AT, T; R) da.
k
Here 2 = (z2---2,)T and o = (fiz -+~ 1,)T are in R"~1, fi; = % and Dy, is the integration
region where S is the maximum among 53 ,...,S;. To facilitate the integration, we apply the

following transformation of variables:

_Zkv]-_p%ka J:k
(D.3) 77;'g = 2

oj\/1—pi; 1 o2

. (zj — zk% 7'012’“) , otherwise.

Tjk o\l 1—p;;

Equivalently, the above transformation can be written as n* = Cy%, where C}, is presented in Eq.
(4.17). The integration domain Dy, becomes

1 Sk
Dy = {(né“,---,nﬁ)l e < —]n? — pie(z1 — &),

Sk — 01:0
< L mS (- gl)(M),jzg,...,nam#k}.
ojk  Sj Tjk
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By the generalized Girsanov theorem in Proposition 3, we obtain

(D3) Ip= /D [Sk exp(—oxnf + pirok(z1 — &1)) — K]p(n* — CLiT, T; Ry) dn*
k
= Spelr—aw) =@ —-a+mTIN(g, . — CpaVT; Ry) — KN (g2 — CofaV'T; Ry,).

The other terms can be calculated in a similar manner. Hence, the result in Theorem 5 is obtained.
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