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Abstract. The shouting (resettable) right embedded in an option contract is defined to be the
privilege given to the option holder to reset certain terms in the contract according to specified
rules at the moment of shouting, where the time to shout is chosen by the holder. This paper
develops the framework of analyzing the optimal shouting policies to be adopted by the holder
of an option with single and multiple shouting rights. It is most interesting to observe that the
optimal shouting boundary depends on the relative values of the riskless interest rate and dividend
yield. The monotonicity properties and the asymptotic behaviors at limiting zero value and infinite
value of time to expiry associated with the shouting boundaries are examined. For the shout floor
with single and multiple shouting rights, we obtain an analytic representation of the price function.
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1. Introduction

The acute competitions in the markets prompt financial engineers to design option contracts with
more exotic features. One feature that may be embedded in an option is the right given to the
holder to reset certain contract terms according to specified rules during the life of the option
contract. One simple example is the resettable put option, where the strike price is reset to be the
prevailing asset price at the moment chosen by the holder. The moment to reset is often called the
shouting moment. Let X denote the original strike price set at initiation of the option, S; and St
denote the asset price at the shouting instant ¢t and maturity date T', respectively. The payoff of
the resettable put option is given by max(X — Sp,0) if no shouting occurs throughout the option’s
life, and the payoff is modified to max(S; — St,0) if shouting occurs at time ¢ before the maturity
date T. Upon shouting, the resettable put option effectively converts into an at-the-money put
option. From the nature of the payoff, it is obvious that the holder should possibly shout only for
St > X so that an increase in the terminal payoff is resulted after shouting.

Another example is the shout floor where the holder can shout at any time ¢ during the life of
the contract to install a floor on the return, with the floor value set at the prevailing asset price .S;
at the shouting moment. The right to install the floor is coined the term “shout floor” by Cheuk
and Vorst (1997). The terminal payoff of the shout floor is seen to be max(S; — Sy,0) if shouting
occurs, but becomes zero if otherwise. Hence, the right to install the floor at the prevailing asset
value upon shouting is equivalent to the right given to the holder to choose when to receive an
at-the-money put option.

The most original options with the shout feature resemble the ladder options, except that
the ladder corresponding to the shout feature is not pre-determined. This class of options were
first called “shout options” by Thomas (1993). Consider the shout option with the call payoff,
its terminal payoff is given by max(Sy — X,S; — X) if shouting occurs at time ¢, and stays at
max (St — X, 0) if otherwise. Here, the “effective ladder” in a shout call option is S;, but the ladder
is chosen by the holder. Again, the holder should optimally choose to shout only for S; > X.

There exist a wide range of financial instruments with embedded shout features. Gray and
Whaley (1999) analyzed the resettable feature in the Geared Equity Investment offered by Mac-
quarie Bank. Brenner et al. (2000) examined the impact of resetting the terms of previously-issued
executive stock options on firm performance. Windcliff et al. (2000) analyzed the Canadian segre-
gated funds with multiple reset rights on guaranteed level and maturity date. Jaillet et al. (1998)
studied a special form of shout feature (swing option) that appears in some energy derivative con-
tracts. Windcliff et al. (1999) proposed a range of numerical algorithms for pricing shout options
with non-constant volatility in the underlying asset price process.

Similar to American options with the early exercise right, the pricing of options with the
shouting right leads to free boundary value problems. One would expect that the analysis framework
and the analytic techniques that have been developed for pricing American options can be employed
to study the pricing models of options with the shout feature.

In this paper, we develop an analytic framework to analyze the optimal shouting policies for
options with single and multiple shouting rights. The paper is organized as follows. In Section 2,
we examine the relationship between the one-shout resettable put option and the one-shout shout
call option, and formulate the pricing models for various types of options with the shout feature.
Section 3 presents the analytic derivation of the price function of the one-shout shout floor. In
Section 4, we explore the characterization of the optimal shouting boundary S7(7) of the one-shout
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resettable put option under different conditions on the relative values of the riskless interest rate
and the dividend yield. In particular, the asymptotic behaviors of S%(7) at 7 — 07 and 7 — oo are
examined. Other properties of S7(7) are also discussed. We also give the details on the numerical
procedure to compute S7(7). The extension of the analysis of the optimal shouting policies to
options with multiple shouting rights is performed in Section 5. The paper ends with conclusive
remarks in the last section.

2. Formulation of the pricing models

We follow the usual Black-Scholes assumptions in the pricing framework for options with the shout
feature. In the risk neutral world, the stochastic process for the asset price S is assumed to follow
the lognormal diffusion process

s

(2.1) <

(r—q)dt+ odZ,
where r and ¢ are the constant riskless interest rate and dividend yield, respectively, o is the
constant volatility and dZ is the standard Wiener process.

2.1 Relation between the resettable put option and the shout call option

Consider the portfolio of holding an one-shout shout call option and shorting a forward contract
with the delivery price same as the strike price of the shout call option. Both derivatives are assumed
to have the same initiation date and maturity date T'. The terminal payoff of this portfolio is seen
to be (i) max(Sy — X,0) — (Sp — X) = max(X — Sy, 0) if there is no shout throughout the whole
life of the contracts, and (ii) max(Sr — X,S; — X) — (S — X) = max(S; — Sr,0) if the holder
shouts at time ¢ prior to maturity. Here, S; and St denote the asset price at the shouting instant ¢
and maturity date T, respectively. This payoff structure resembles that of the one-shout resettable
put option, where the optimal shouting time to reset the strike is chosen by the holder.

Let V1 (S, 7) and U; (S, 7) denote the price of the one-shout resettable put option and the one-
shout shout call option, respectively, where 7 is the time to expiry. Since the shout call option
can be replicated by the combination of the resettable put option and the corresponding forward
contract, both options should share the same optimal shouting policy. In addition, the relation
between V4 (S,7) and Uy (S, 7) is given by

(2.2) Ui (S,7) =Vi(S,7) + Se™ 1" — Xe 7.

In the remaining of this paper, we will concentrate our discussion on the resettable put option
and the shout floor since the optimal shouting policy of the shout call option is exactly the same
as that of the corresponding resettable put option.

2.2 Formulation as free boundary value problems

For either the one-shout resettable put option or the one-shout shout floor, the option becomes an
at-the-money put option upon shouting. The price function of this at-the-money put option is seen
to be linearly homogeneous in S and takes the form SP;(7). By setting the strike price to be the
current asset price in the Black-Scholes vanilla put option price formula, we obtain

(2.3) Pi(t) =e ""N(—dy) — e 7" N(—dy),
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where

0_2
0+ %

1 x 2 T —
(2.4) N(z) = E/oo e~ /2de, dy = TQ\/F and do =d; — o/T.

The pricing model of the resettable put option or the shout floor leads to a free boundary value
problem. The linear complementarity formulation of the pricing function V' (S, 7) is given by

v o? ,0°V ov
82 (r—q)S— > >
or 9 S 082 (T q)SaS +rV = 0, V(S, T) e SPl(T),
v o? ,0°V ov
25) [E — 55 e ~ - a)Sgg V|V -SR] =0,

max(X — S,0), resettable put
shout floor

Note that the formulations of the resettable put and the shout floor differ only in the terminal payoff.
The critical shouting boundary, denoted by S%(7), is not known a priori but has to be solved in
the solution procedure of the free boundary value problem. Alternatively, we may formulate the
pricing model as

v 0% 0% oV .

E—;SW—(T—q)S%—I—TV:(] for 0<S<SI,T>0,
(2.6) V(0,7) =Xe ", V(S],T) = STPi(7),

ov

S5 (81,7 = Pi(r),

_J max(X — S,0), resettable put
V(5,0) = {0, shout floor

Note that the option price function V'(S, ) observes the smooth pasting (or “high contact”) condi-
tions, that is, continuity of the option value and delta across the optimal shouting boundary S5 (7).
Since the conversion of the option into an at-the-money put option at the critical asset price ST (7)
is self-financing, the continuity of the option value at Si(7) then follows. The validity of the smooth
pasting condition can be deduced by following the same argument as that used by Merton (1973)
for the American option model.

2.3 Properties of P (1)

The following results on the derivative of €?” P;(7) are crucial for the derivation of the pricing
formula of the one-shout shout floor as well as the analysis of the optimal shouting boundary for
the one-shout resettable put option.

Lemma 2.1 For the function P;(7) defined in Eq. (2.3), the derivative of e9” P;(7) observes the
following properties.

(i) If r < g, then

(2.7) %[equl(T)} >0 for 7€ (0,00).
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(ii) If r > g, there exists a unique critical value 75 € (0, 00) such that

(2.80) % @RAE] =0

and

(2.80) % TP(F)] >0 for 7€ (0,7),
(2.8¢) % [T P(T)] <0 for 1€ (17,00).

The proof of Lemma 2.1 is given in the Appendix.

3. Analytic Price Formula of the Shout Floor

The pricing properties of the one-shout shout floor have been investigated by Cheuk and Vorst
(1997). In this section, we go beyond their results by deriving the analytic price formula of the

one-shout shout floor.

3.1 The price of the shout floor

Let Ry(S,7) be the price function of the one-shout shout floor. Using the results in Lemma 2.1,

the analytic representation of R;(S,7) can be derived. Since there is no strike price X appearing
in the terminal payoff function and the obstacle function SP;(7) observes linear homogeneity in S,
one can show that R;(S,7) is linearly homogeneous in S. We may write R1(S,7) = Sg(7), g(T) to
be determined. Substituting the assumed form of Ry (S, 7) into Eq. (2.5), we obtain the following

governing equation for g(7).

%[equw)] >0, g(r) = A(7),

(31) e g(r)lo(r) ~ Pr(r)] =0,
g(0) =0.

We solve for g(7) under the following two separate cases:
(i) r<gq.

d
By Eq. (2.7), d—[eqTPl (7)] is strictly positive for all 7 > 0 and P;(0) = 0; therefore, we can
T

deduce that

(3.2a) g(t) = Pi(1), 7€ (0,00).

(ii)) > q.
By Eqs. (2.8a,b), we deduce similarly that

(3.2b) g(t) = P (1) for 1€ (0,77].



d d
When 7 > 77, we cannot have g(7) = P;(7) since this would lead to d—[eng(T)] = d—[equl (m)] >
T T

d
0, a result contradicting to that of Eq. (2.8¢). Hence, we must have d—[eng(T)} = 0for 7 € (77, 00).
T

Solving the differential equation and applying the auxiliary condition: g(77) = P;(77), we obtain
(3.2¢) g(1) = e "I P (73) for T € (1F,00).
The above results are summarized in Theorem 3.1.

Theorem 3.1 The price function of the one-shout shout floor R; (S, 7) has the following analytic
representation.

(i) Ifr<gq Ri(S,7) = SPi(7), 7 € (0,00).
(ii) If r > g,

_ ] Sh(n), 7€ (0,77]
s = {6‘q(T‘T”SP1(T’{), 7€ (77,00),

where 77 is the unique solution to the following equation

d . gr _
E[e Pi(1)] =0.

3.2 Optimal shouting policy of the shout floor

d
The optimal shouting policy of the one-shout shout floor depends on the sign of d—[eqTPl (1)]-
T

When the sign is non-negative, we have R;(S,7) = SP;(7), inferring that the holder should shout
at once. This occurs either when (i) » < ¢, 7 € (0,00), or (ii) r > ¢, 7 < 7{. Conversely, when
r > q and 7 > 77, Theorem 3.1 indicates that R;(S,7) > SP;(7), so the holder should not shout
under such scenario. In other words, when r > ¢, the holder should never shout when 7 > 7 and
shout at once when 7 < 77.

4. Optimal Shouting Boundary for the Resettable Put Option

Unlike the shout floor, the analytic price formula for the resettable put option is not available. We
examine the characterization of the optimal shouting boundary S7(7) of the one-shout resettable
put option, with regard to the asymptotic behaviors at 7 — 07 and 7 — co, monotonicity behaviors,
etc. It is most interesting to observe that the behaviors of S7(7) depend on the relative values of r
and g. We also obtain the integral equation for the determination of S7(7) and solve the equation
using the recursive integration method [Huang et al. (1996)].

4.1 Asymptotic behaviors of Si(7)

For American options, it is well known that the critical asset price at 7 — 0T depends on the ratio
of 7 and ¢q. However, this is not so for the resettable put option. Indeed, we have the following
result:

Theorem 4.1 The optimal shouting boundary S7(7) for the one-shout resettable put option starts
from X, namely, S7(07) = X.



The mathematical proof of Theorem 4.1 is presented in the Appendix. From financial point of
view, if S¥(07) # X, then arbitrage opportunities arise since the theta of the resettable put option
would always be positive at S = X as time is approaching expiry.

Next, we examine the asymptotic behaviors of the shouting boundary of the resettable put
option S7(7) at infinite time to expiry. Let S7 . denote the limit of S7(7) as 7 — oco. We would
like to show that S
This is linked with the existence of the following limit

1,00 €xists when r < g, and subsequently determine its corresponding value.

(4.1) lim "™ Pi(1) = lim [N(—=dy) — e 9" N(=d;)] =1 for r<gq.

T—00

Let V4 (S, 7) be the price function of the one-shout resettable put option. We apply the trans-
formation: Wi(S,7) = e Vi(S,7) to Eq. (2.6). In terms of W;(S,7), the transformed set of
equations become

8W1 0"2 282W1 an . «

o 3° 592 —(T—q)SaS =0, 0<S<S], 7>0,
(4.2) Wi(0,7) =X, Wi(S7,7)=S7e""Pi(1),

8W * rT

I (st.m) = " Bu(r),

W1(S,7) = max(X — S,0).

Let W°(S) denote the limit of W1(S,7) as 7 — oco. The temporal derivative term oW

in Eq.

4.2) vanishes upon taking the limit 7 — oco. The corresponding set of governing equations for
p g p g g g eq
Wee(S) are given by

2 2 [e’e [e’e

0" 2 d Wy _ dwe *

25’ 152 +(r—gq)S 7S =0, 0<S<Sl’oo,
(4.3) We(0) =X, WS (51«) = 51,

awee

d—Sl( 1,00):1‘

This formulation for W°(.S) implicitly requires the existence of lim e"” P (7), so it is applicable
T—00

only for r < g [see Dewynne et al. (1989)]. The solution of Eq. (4.3) gives both W°(S) and S7 ..
The solution to W°(S) is found to be

aa

Xfa 14+« *
—(1+a)1+a ST 0<S<S

1,00

(4.4) W(S) = X +

1
where ST = (1 + —) X and o =2(q — 1) /0.
' «
Hence, when r < ¢, Si(7) is defined for 7 € (0,00) with the asymptotic limit ST =

1
(1 + E)X . Note that when 7 = ¢, a becomes zero; and correspondingly, ST ., becomes infi-
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When r > g, we recall the result in Theorem 3.1 that it is never optimal to shout the one-shout
shout floor at 7 > 75. Equivalently, R1(S,7) > SPy(7) at 7 > 77 when r > ¢. On the other hand, it
is obvious that Vi(S,7) > Ry(S,7) for all S and 7. Hence, when r > g, it is never optimal to shout
at 7 > 77 by virtue of the property Vi(S,7) > SPi(7) at 7 > 77. In addition, due to Lemma 2.1
(ii), there always exists a critical asset price above which it is optimal to shout when 7 < 75. More
precisely, for 7 > ¢ and 179 < 77, one can show that there exists a critical asset price S;(79) such
that Vi(S,m0) = SPi(70) for S > S(m9). For the rigorous proof of the above statement, we can
employ the comparison principle and other related techniques discussed in Brezis and Friedman
(1976). Combination of above arguments yields the result that the optimal shouting boundary
S3(7) is defined only for 7 € (0,7%) if » > q.

‘We now summarize the above results as follows:

Theorem 4.2 The asymptotic behavior of the optimal shouting boundary S7(7) of the resettable
put option at 7 — oo depends on the relative values of r and q.

i) If then lim Si(7) = |14+ —| X.
() Ttr < . then lim 3(r) = [1+ 52—
(ii) If r = ¢, then lim S7(7) = oo.
(i) If » > ¢, then S7(7) is defined only for 7 € (0,77), where 7{ is the unique solution of

dgr —
E[e Py (1) =0.

4.2 Monotonicity of S5(7)

In this subsection, we would like to establish the result that the critical asset price S7(7) is an
increasing function of 7. We recall that similar monotonic property of the critical asset price is
shared by the American put option. Since the intrinsic value max(X — S,0) of the American put
option is independent of time and longer-lived American put option is worth more than its shorter-
lived counterpart, this leads directly to the monotonicity of the critical asset price of the American
put option. However, the intrinsic value of the one-shout resettable put option is the price of the
corresponding at-the-money put option and that price is time dependent. Therefore, it is not quite
straightforward to observe the monotonicity of the optimal shouting boundary of the resettable put
option.

To perform the analysis of the monotonicity of S (7), we first introduce an auxiliary notion
called the spread value of the resettable put option.

Definition 4.3 The spread value D1(S,T) of the resettable put option is defined as the price dif-
ference between the resettable put option and the corresponding at-the-money put option, namely,

Dy(S,7) =Vi(S, 1) — SPy (7).

We would like to choose the domain of definition of D;(S,7) so that cases where the holder
never shouts her one-shout resettable put option are ruled out. Hence, the spread value D;(S,T)
is defined for (i) S > X and 7 < 77 when r > ¢, and (ii) S > X and 7 < co when r < g. Generally
speaking, the price function of the one-shout resettable put option has no monotonicity property
with respect to time. However, D1 (S, T) observes the properties as stated in Lemma 4.4.
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Lemma 4.4 The spread value D; (S, 7), with the domain of definition: (i) S > X and 7 < 77" when
r > g, and (ii) S > X and 7 < co when r < ¢, is monotonically increasing with 7 and decreasing
with S.

The proof of Lemma 4.4 is presented in the Appendix.

Suppose the one-shout resettable put option is shouted at S7(7) so that D;(Sj(7),7) = 0,
then from Lemma 4.4 one has D,(S,7) = 0 for all S > S7(7). On the other hand, if one does not
shout the one-shout resettable put option at S and 7/, then V(S,7") > SPi(7") or D1(S,7") > 0.
From Lemma 4.4, we infer that D;(S,7) > 0 for all 7 > 7/, that is, one would never shout at the
same value of S and at 7 > 7/. Combining the above arguments, one obtains Theorem 4.5.

Theorem 4.5 The optimal shouting boundary S;(7) of the one-shout resettable put option is
monotonically increasing with 7.

4.3 Integral equation for S7i(7)

We would like to find the integral representation of the shouting premium of the resettable put
option. In the stopping region S > S7(7), we have Vi(S,7) = SPi(7). Hence, the governing
equation for V4 (S, 7) for S € (0,00) is given by

oy

o2
4, At N
(4.5) or 25

595 TV T Ser L Py (r)], 5> Si(7).

, 0%V (- v, 0, 0< 8 <8i(r),
08? oS

Let ¢(Sg; S) denote the transition density function for the future asset value S at ¢ periods from
now, given the current asset value S. The value of the resettable put option can be expressed as

Vi(S,7) = e=" / Vi (Ss, 0)8(Sy: S) dSs

P(S¢; S) dSedé,
u=r—¢

(4.6a) / ¢ / See™1(T=8) — d [Py (u)]
) du

where

Se 2\ .12
1 h=s—-(r—q—%)¢
(4.60) P(Se; §) = N [ - <202£ - ) }

The first term is simply the value of the corresponding European put option pg(S, 7), and the second
term gives the shouting premium F4 (S, 7) of the resettable put option. The integral representation
of E1(S,7) can be expressed as

(4.70) Bi(8,7) =S¢ [ Nldyrma) Sl P du, w=7-
0

where

ln%—l—(r—q—l—";) (T —u)

T—U

(4.7b) iy =



At the critical asset value S = S7(7), V1 (S,7) = SPi(7). Substituting this relation into Eq. (4.6a),
we obtain the following integral equation for S7(7):

@80 S{OPD) = pu(S1r) )+ S0 [N ) le )] du,

where

Si(r) _ a2 _
(4.8b) . In 5y + (’" a+ 2)(T u).

b oV —u

One can then apply the recursive integration method (Huang et al., 1996) to solve for S7(7)
from the above integral equation. This is done by integrating the integral premium term using
numerical quadrature and determining the optimal shouting boundary S7(7) at discrete instants
t; recursively. As a remark on the numerical implementation, since the integrand function inside
the integral term has an integrable square root singularity at u = 0, it is necessary to transform
the integral into the following form:

N )6 Py ()] du

0 1,7—u d
(49) ——(r—q) [ N} ,_)e"""VN(=dy) du
0
VT
to [ N, e)n(d(u?) du.
0

4.4 Numerical results

We applied both the binomial scheme (with the necessary dynamic programming procedure to
incorporate the shouting feature) and the recursive integration method to determine the option
value V4 (S, 7) and the optimal shouting boundary S5 (7) of the one-shout resettable put option. In
all calculations, we take the strike price X = 1.0 and volatility o = 20%.

FIGURES 1la and 1b show the plots of V4 (S, 7) against S at different values of 7, corresponding
to r < g and r > g, respectively. The price functions V;(S,7) show no monotonic property in 7.
This behavior is in contrast to the American options where American option price functions are
always monotonically increasing in 7. The lack of monotonicity in 7 may be attributed to the
fact that the derivative received upon shouting is an at-the-money European put option, and the
price function of a European put option does not exhibit monotonicity in 7. For r < ¢q, each
price curve touches tangentially the line representing the value of the corresponding at-the-money
put option (see FIGURE 1la). When r > g, there exists a critical value of 7 above which it is
never optimal to shout. When the following set of parameter values are used in the option model:
r = 0.06,q = 0.02,0 = 0.2 and X = 1, this critical value of 7 is found to be 5.7121. In FIGURE
1b, we observe that when 7 < 5.7121 (say, 7 = 0.5 or 7 = 1.5), the price curve touches the line
representing the value of the at-the-money put. However, when 7 > 5.7121 (say, 7 = 6.0), the price
curve always stays above the at-the-money put value line.

In FIGURES 2a, 2b and 2c, we plot the critical asset price S7(7) as a function of 7 correspond-
ing tor < g,r = g and r > g, respectively. In all cases, S7(7) is a monotonically increasing function
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of 7. These plots verify the result stated in Theorem 4.5. Firstly, when r < ¢ (see FIGURE 2a),
ST(7) is defined for 7 € (0,00) and lim S7(7) = 1.5. This asymptotic value agrees with S7(7) as

given in Theorem 4.2. Secondly, when r = ¢ (see FIGURE 2b), S7(7) tends to infinity as 7 tends
to infinity. Lastly, when r > ¢ (see FIGURE 2c), S} (7) is defined only for 7 € (0,77), where 77 is
obtained by solving Eq. (2.8a). Such behavior of S7(7) indicates that it is never optimal to shout
when 7 > 77.

5. Options with multiple shouting rights

In this section, we extend our discussion on the pricing models of resettable put options with
multiple shouting rights throughout the life of the option contract. Let n denotes the total number
of shouts allowed for the holder. Let t; denote the time of the j' shout to be chosen optimally by
the holder of a n-shout resettable put option, and S, denote the asset value at the shout instant
t;. Since the new reset strike price should be higher than the previous reset strike price, we should
have Sy, > S,
option is given by max(S;, — S7,0), where t; is the last shouting instant chosen by the holder,
0 < ¢ < n. Similarly, the terminal payoff of the n-shout call option will be max(Sy — X, S;, — X).

and S;; > X in all shouts. The terminal payoff of the n-shout resettable put

One can apply similar argument as in Section 2.1 to deduce that the n-shout call option can be
replicated by the combination of the n-shout resettable put option and a forward contract with the
delivery price same as the strike price of the n-shout call option. Let V,,(S,7) and U, (S, T) denote
the price of the n-shout resettable put option and the n-shout call option, respectively. These two
prices are related by

(5.1) Un(S,7) = Vo(S,7) + Se™ 1" — Xe .

In the following discussion, we concentrate on the pricing model of the n-shout resettable put
option.
5.1 Pricing formulation of the n-shout resettable put option

Upon shouting of the n-shout resettable put option, the number of reset rights is reduced by one
so the resettable put option reduces to the one with only n — 1 resets allowed. The resettable put
option is at-the-money exactly at the instant of shouting. The price of an at-the-money resettable
put option is linearly homogeneous in S. We define the function P,(7) to be

(5.2) Po(1) = Vi (1,13 X = 1),

so that the price of an at-the-money (n — 1)-shout resettable put option is given by SP, (7).

The linear complementarity formulation of the free boundary value problem associated with
the n-shout resettable put option can be expressed as [see also Eq. (2.5)]

v, o ,0°V, oV,
OVn 07 o - -
ar 20 g T 955g TrVaz0 ValSim) 2 SP(T),
v, o? ,0%, v,
(5-3) or 75 992 (r— Q)Sﬁ + 1V | [V = SP,(7)] =0,

V.(S,0) = max(X — S,0).

It is analytically intractable to perform the full theoretical analysis on the characterization
of the optimal shouting policies for the multi-shout options. The main difficulty comes from the
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non-availability of the analytic forms for P,(7),n > 1 [unlike P;(7) which has a simple analytic
representation; see Eq. (2.3)]. However, the numerical calculations of the option values and optimal
shouting boundaries of multi-shout options using the binomial method are quite straightforward.
We first present our numerical calculations on the one-shout, two-shout and three-shout resettable
put options under the two cases: » < g and r > q.

5.2 Properties of the price functions and optimal shouting boundaries of n-shout
resettable put options from numerical experiments

Since a n-shout resettable put option is reduced to its (n— 1)-shout counterpart upon shouting, one
may expect that the characterization of the shouting policies of the n-shout resettable put option
should resemble closely to that of the one-shout counterpart. Let S%(7) denote the critical asset
price for the n-shout resettable put option. We first postulate some properties on S%(7), and then
examine their validity through numerical experiments.

When r < g, the optimal shouting boundary exists at all times, that is, S} (7) is defined for
7 € (0,00). For a given value of 7, one observes S , (1) < S5 (7),n = 1,2,---. This can be deduced
from the financial intuition that the holder should choose to shout at a higher critical asset price
with less allowable shouts remaining. The shouting boundaries start at X, that is, S} (07) = X,
and S} (1) is an increasing function of 7 with a finite asymptotic value at 7 — oco. Further, from
the monotonic property on n, we have

(5.4) lim Sy, () < lim Sy(7), n=1,2,---

T—00 T—00

In the special case r = ¢, S5 (7) > o0 as 7 —oo,n=1,2,---.

When r > g, S} (7) retains the monotonic properties in both n and 7 and S} (1) also starts at
X. However, S} (7) is defined only for 7 € [0,7}), where 77 is the critical value for 7 such that
it is never optimal for the holder to shout the n-shout resettable put whenever 7 > 7. With less
number of shouts remaining, the holder would become more conservative on the use of the shouting
rights. For a given 7, it may occur that it would be optimal to shout a n-shout resettable put at
sufficiently high asset price level but not so for its (n — 1)-shout counterpart. Hence, we expect
Thi1 > Tpyn=1,2,---

We applied the binomial method, together with the dynamic programming procedure for the
shout feature, to compute the option values and critical asset prices of one-shout, two-shout and
three-shout resettable put options. The strike price and volatility are taken to be X = 1.0 and
o = 0.2 in all calculations. For r < ¢, we take r = 0.02 and ¢ = 0.06; while for r > ¢, we take
r =0.06 and ¢ = 0.02.

In FIGURE 3a, we plot Vi(S,7),Va(S,7) and V5(S,7) against S at 7 = 1, given r < q. We
observe the monotonic property V1 (S, 7) < Va(S,7) < V3(S, 7), which agrees with the intuition that
put option with more shouting rights should have higher values. At the critical asset prices, all of
the price curves touch tangentially the line representing the value of the corresponding at-the-money
put option. The price function of the at-the-money (n — 1)-shout put option is given by SP, ()
[see Eq. (5.2)]. The critical asset prices, S7(7), S5(7) and S%(7), corresponding to the one-shout,
two-shout and three-shout put options, observe the monotonic property: Si(7) > S3(7) > S5(7).

In FIGURE 3b, we plot V1(S,7),Va(S,7) and V3(S,7) against S at 7 = 12, given r > ¢g. All

of the monotonic properties stated in the last paragraph remain valid even when r > q. At 7 =12,
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only the price curve V3(S,7) touches the corresponding at-the-money put option value line. The
price curves V1 (S,7) and Va(S,7) always stay above the corresponding at-the-money put option
value lines, implying that it is never optimal to shout at any asset price level. When r > g, there
exists a critical value 7}, for the n-shout resettable put option such that the holder never shouts
when 7 > 7). One then infers from the properties of these three price curves that 7 = 12 lies
between 73 and 73, that is, 77 < 75 < 12 < 73.

FIGURES 4a and 4b show the plots of S (1) against 7,n = 1,2,3 for r < g and r > ¢,
respectively. When r < g, we observe that S};(7) is defined for 7 € (0,00) and S}, () < S;,(7),n =
1,2. Also, S} (1) tends to a finite asymptotic value as 7 — oo, n = 1,2, 3. From FIGURE 4a, these
asymptotic values are approximately found to be 1.5,1.31 and 1.23, for the one-shout, two-shout
and three-shout resettable put options, respectively. On the other hand, when r > ¢, the shouting
boundaries in FIGURE 4b reveal that S7(7) is defined only for 7 € (0,7)),n = 1,2,3. These
critical values are estimated to be 77 = 5.71, 74 =~ 9.55 and 73 ~ 13.0 for the one-shout, two-shout
and three-shout resettable put options, respectively.

5.3 Properties of P, (1)

The functions P,(7),n = 1,2,--- [see the definition in Eq. (5.2)] play an important role in de-
termining the optimal shouting policies of the n-shout shout floors and the n-shout resettable put
options. The properties of P,(7) are summarized in Lemma 5.1.

Lemma 5.1 The function P, (7) observes the following properties.
(i) If r < g, then

(5.5) di[equnm} S0 for T (0,00).

T

(ii) If r > g, there exists a unique critical value 7} € (0, 00) such that

(5.6a) %[eqTPn(T)} . =0,

and

(5.60) LR >0 for T (0,7)
(5.6¢) %[equn(f)] <0 for r€(rt,00).

In addition, we have 7, < 7},,; and 1}1_{207'” = oo.

Due to the lack of the analytic formula of P,(7), the proof is not given here since this requires
theoretical tools in partial differential equation theory to establish the result. However, their validity
has been verified by numerical results (see FIGURES 3a, 3b, 4a and 4b).

5.4 Price functions and optimal shouting policies of the n-shout shout floor

As a consequence of Lemma 5.1, one may deduce the price function of the n-shout shout floor.
Upon the first shouting, the n-shout shout floor then becomes the corresponding at-the-money
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(n — 1)-shout resettable put option. The n-shout shout floor shares the same governing equation
with that of n-shout resettable put option [see Eq. (5.3)] except that the initial condition is set to
be zero. Following similar argument as that for the one-shout case (see Sec. 3), the price function
takes different forms according to r < q or r > g (see Theorem 5.2).

Theorem 5.2 Let R, (S, 7) denote the price function of the n-shout shout floor. We have
(i) Ifr<gq, Rn(S,7) = SPu(7), 7 € (0,00).
(ii) If r > g,

_ [ SPy(7) 7€ (0,7;)]
Rn(sa T) - {e—Q(T_T;)SPn(T;), T E (7_:;700)’

d
where 77 is the unique solution to —[e?” P,,(7)] = 0.
T

Remark The above analytic representation of R, (.S, 7) is not an analytic formula in a strict sense.
Recall that P,(t) = V,,_1(1,7; X = 1), so one has to find Vi(S,7), Va(S,7),---, successively in
order to obtain P, (7).

Optimal shouting policies

First, consider the case r < g. Since we have R,,(S,7) = SP,(7) for all values of 7, we deduce that
the first shouting right will be utilized at once at any time and any asset price level. Next, when
r > q, the n-shout shout floor will not be shouted at any asset price when 7 > 7¥. However, it will
be shouted at once at any asset price level once 7 < 7,7, Once the first shouting has occurred, the n-
shout shout floor reduces to the at-the-money (n — 1)-shout resettable put option. The subsequent
optimal shouting policies will be governed by those of the multi-shout resettable put option (see

Sec. 5.5).

5.5 Optimal shouting policies of the n-shout resettable put option

Similar to Definition 4.3, we define the spread value D,,(S,7), n > 2 of the n-shout resettable put
option as follows:
Dn(S7 T) = Vn(Sa T) - SPn(T)

for (i) S > X and 7 < 7} when r > ¢, and (ii) S > X and 7 < co when r < gq.
Similar to Lemma 4.4, one can show

Lemma 5.3 The spread value D, (S, 7), with the domain of definition: (i) S > X and 7 < 7,5 when
r > g, and (ii) S > X and 7 < co when r < ¢, is monotonically increasing with 7 and decreasing

with S.

The properties of the optimal shouting boundary S}, (7) of the n-shout resettable put option
are similar to those of the one-shout resettable put option. They are summarized in Theorem 5.4.

Theorem 5.4 Let S} (7) be the optimal shouting boundary of the n-shout resettable put option
and let S}, ., denote lim S} (7). The properties of S},(7) are given by

(i) S5(07) = X.
(ii) If r < g, then
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1\ X
(5.7a) 550 = (1 ¥ —) X
’ o)

where o = 2(q — 7“)/02, (1 =1 and

aa
5.7b L, =1+ ——plte,
( ) /8 + (1 _I_a)1+a18n—1
In addition, we have the monotonic property S}, ., < S}, 1 o.,n=2,3,--+, and lim S} = X.

(iii) If r = g, then S}, ., becomes infinite.

(iv) If » > g, then there exists a critical value 7 € (0,00) such that S} (7) is only defined for
7€ (0,75).

(v) S%(7) is monotonically increasing with 7.

(vi) Sy(r) < S} _,(r) for all n > 2.

n—1

The proof of part (i) is similar to that of Theorem 4.1. Using the results in part (ii), Theorem
5.2, and applying similar argument used in the one-shout model (see Sec. 4.1), we can establish
part (iv). Part (iii) follows immediately from part (ii) by observing that & = 0 when r = ¢. Similar
to Theorem 4.5, the proof of part (v) can be derived from Lemma 5.3. The proofs of part (ii) and
(vi) are presented in the Appendix.

6. Conclusion

The shout feature embedded in a derivative entitles the holder the right to reset certain terms in
the derivative contract. This may be interpreted as the privilege given to the holder to convert
the original derivative to a new derivative or asset, and the time to shout is chosen optimally
by the holder. In a broad sense, the common early exercise feature in American options and
conversion feature in convertible bonds can be visualized as special forms of the shouting feature.
Since the critical asset price at which the holder optimally shouts is not known a prior but has to
be determined in the solution process, the pricing models are formulated as free boundary value
problems.

In this paper, we have analyzed the optimal shouting policies of options with single or multiple
shouting rights. The resemblances between the shout call option and the resettable put option have
been examined. The behaviors of the optimal shouting boundaries of the resettable put options
depend crucially on the relative values of the riskless interest rate r and dividend yield q. When
r < q, the shouting boundary is defined at all times. This implies that at any time during the life
of the option, the holder should choose to shout optimally when the asset value goes above some
threshold value. On the other hand, when r > ¢, there exist a critical time earlier than which it
is never optimal for the holder to shout the resettable put option at any asset value level. The
optimal shouting policies of the multi-shout shout floor have striking properties. When r < g, the
shout floor should be shouted at once at any time and at any asset price level. When 7 > ¢, there
exists a critical time earlier than which it is never optimal for the holder to shout the shout floor.
However, the shout floor should be shouted at once at any asset price upon reaching the critical
time. When the first shouting has occurred in a multi-shout shout floor, the shout floor becomes
the corresponding at-the-money resettable put option with one shouting right less.
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A number of interesting analytic formulas have been derived in the paper. We obtain the closed
form price formula of the one-shout shout floor and the integral representation of the shouting
premium of the one-shout resettable put option. The analytic representation of the price of the
multi-shout shout floor is also deduced. In addition, we obtain the asymptotic critical asset prices
at infinite time to expiry for the one- and multi-shout resettable put options.

Several results on the monotonic properties with regard to the critical asset prices and shout-
ing boundaries have been explored. All these monotonic properties agree with the corresponding
financial intuitions. Some of these properties are: (1) an option with more number of shouting
rights should have higher value compared to its counterpart with less; (2) the holder shouts at a
lower critical asset price with more shouting rights outstanding; (3) the holder chooses to shout
at a lower critical asset price for a shorter-lived option; (4) the critical time earlier than which
it is never optimal to shout increases with more shouting rights outstanding. These results are
established through verification by numerical experiments and theoretical justification by rigorous
mathematical proofs.
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APPENDIX

Proof of Lemma 2.1 The derivative of e?” P, (1) is found to be

TPy ()] = T (= g)N(=dy) + 5

1
where n(z) = N'(z) = \/?e_ﬁ/ 2. Obviously, when r < ¢, we have the property as stated in Eq.
™

(2.7), that is,
d T
E[eq Pi(r)] >0  for 7€ (0,00).

Next, we consider the case where r > ¢. It is necessary to consider the following three separate
2 2 2
o o o

cases: (i) r—q= > (i) r—q> = and (iii) r — ¢ < ER

2
. . o .. o 2 1 o
First, for the special case r—q = 5 the derivative of € Py () becomes 56 o7T/2 (\/_F — 5)
The conditions stated in Eqs. (2.8a,b,c) are easily seen to be satisfied. In this case, 77 = 4/02.

2
o
For the general case r — q # > we need to consider the property of the function

f(r) = =(r—q)N(=d2) + (da).

ag
—"N
2./

The derivative of f(7) is found to be

0= () iy | e

It is seen that f(7) — oo as 7 — 0T and f(7) always remains negative when 7 becomes larger
than some threshold value; so f(7) must have at least one root in (0,00). To show the validity
of conditions stated in Eqgs. (2.8a,b,c), it suffices to show that f(7) has exactly one root. When

2 0.2

—r. The function f(7) is seen to have
(r—q?—%
its absolute minima at 7 = 7 since f’(7) < 0 for 7 € (0,7) and f'(7) > 0 for 7 € (7, 00). Together
with the properties that f(0%) — co and lim f(7) < 0, we conclude that f(7) has exactly one root

O- ~
r—q> 4, f'(1) = 0 has the unique solution 7 =

2
o
in (0,00). For the remaining case r — ¢ < - it is observed that f(7) is a monotonic decreasing

function of 7 since f’(7) < 0 for 7 € (0,00). Hence, the same conclusion that exactly one root in
(0, 00) is obtained.

Proof of Theorem 4.1 Let D1(S,7) denote the difference between the values of the resettable put
option and its corresponding at-the-money put option, that is, Dy(S,7) = Vi(S,7) — SPi (7).
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Substituting the above relation into Eq. (2.6), we obtain

oD o2 J9%°D oD

8_7'1 -3 2 8521 —(r— q)SB_Sl +rDy = =S[Py(1) + qPi(1)], 0<8<Si(r),7>0,
D1(0,7) = Xe "7, Dy(S7(7),7) =0,

oDy, ., B

ﬁ(sﬂﬂﬁ) =0,

D1(S,0) = max(X — S,0).

Note that D;(S,7) > 0 for all asset values and at all times. On the other hand, we observe that
—S[P} (1) + qP1(1)] = —o0 as 7 — 0. Assuming S7(0") > X, then for S € (X, S;(0")) we have
oD
8—71(5, 0%) = —S[P}(0%) + ¢P1(0)] < 0.
This would imply D;(S,0") < 0, a contraction to D;1(S,7) > 0 at all times. Therefore, we must
have S7(0%) < X. On the other hand, financial intuition dictates that Sj(0") > X (see Sec. 4.1).
Combining the results, we obtain S7(07) = X.

Proof of Lemma 4.4 Let V1(S,7) and pg(S,7) be the price function of the one-shout resettable
put option and the corresponding European put option, respectively. It is clear that Vi(S,7) >
pe(S,7) > SPi(1) for S < X. Hence, for S < X, the constraint V;(S,7) > SP;(7) in the linear
complementarity formulation for V;(S,7) can be replaced by V1(S,7) > pgr(S, 7). For convenience
of analysis, we define the continuation of the spread value D;(S,7) as follows:

o %(S,T)—Spl(’r), S>X
D1(87) = {m(sw Cpp(S,7), S<X,

which satisfies

8D1 . O'2 262D1
or 2 052
0D 0* ,0° Dy

or 27 992
Dy(S,0) =0,

D
—(r— q)s% +rDy > hi(S,7), Di(S,7) >0,

oD
(= @S DL rDy — ha(8,7)| Du(S,7) =0,

where

T

—qT d T
hi(S,7) = {—Se 4 d—[eq Py(1)], S>X
0, S<X.

h
Due to Lemma 2.1, we have % < 0 for 7 € (0,00) if r < g and for 7 € (0,7]) if » > ¢q. We

then use the comparison principle of variational inequality to infer that D;(S,7) is monotonically
decreasing with S. Next, we show that D (.S, 7) is monotonically increasing with 7.

We first consider the case r > ¢ and follow the notations in Lemma 2.1. The proof of Lemma

2.1 implies that
d

e L[ Py(r)]) = —re () e () <0
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oh
for 7 € (0,77), so 8_1 > 0 for 7 € (0, 7). The monotonicity of D;(S,7) with respect to 7 is then
T
established.

If r < g, we make the transformation D, (S,7) = e 7" D1(S, ) in the above linear complemen-
tarity formulation and obtain

8ﬁ1 0'2 282ﬁ1 aﬁl ~ ~ ~

- —(r — - > h >
or 9 052 (T’ Q)S BYS + (T’ +7)D1 = hl(sa T)a Dl(SvT) - 07
oD, o2 ,0°D, oD, PN N B
5~ 55 ggz ~ 1 OS5 +(r+7) D1 = hi(S,7)| Di(S,7) =0,

D1 (S,0) =0,

where 7y is a positive constant and

d
~ _Ge—(vto)T Zrpar
hi(S,7) = { Se o [e?" Py (T)], S>X
0, $<X.

It is not hard to check that we can choose v > 0 to be sufficiently large to guarantee that,

(0O L[ Py (1)]) = e [ ) f + 1]
—e () — N () + =203 ) = T = T = 9] <0

oh -
so that 8_1 > 0. Again, we use the comparison principle to give the result that D;(S,7) is
T

monotonically increasing with respect to 7, so does D1 (S, 7). This completes the proof.

Proof of Theorem 5.4, part (ii) We follow similar approach as used for the one-shout model (see
Sec. 4.1). Let W, (S,7) = € V,,(S,7), and W:°(S) denote the limit of W,,(S,7) as 7 — oco. The

governing equation for W°(S) takes the form

2 2117 00 oo
o2 L, d2Wo AWy .
25 152 +(r—q)S s =0, 0< 8 <8, 00
W (Sn.00) = BrSh oo
awee _
dS (Sn,oo) - /Bna

where 3, = lim " P,(7) and S, ., = lim S} (7). It has been seen that (3, exists [see Eq. (3.1)].

T—00 T—00
In general, we have

Bpn = lim € P,(r) = lim W,,_1(1,7;1) =Wy ;(1;1).

T—00 T—00

Hence, 3, exists provided that W92 ;(1;1) is defined. The existence of 3,, can be argued as follows.
Given the existence of 31, we can determine W$°(1;1). This guarantees the existence of [, and
from which we can determine W$°(1;1), and so forth.

19



The general solution W2°(S) is found to be
W(S) =X +CSsHre,

where o = 2(q — r) / 0? and C is an arbitrary constant. Applying the two auxiliary conditions, we
obtain

N S

- 1+a S, (14 a)tte X’

1\ X
S;;_1+)
== (1+3) 5

The recurrence relation for 3, is deduced to be

Bn =W (1:1) =1+ Wﬁlm

The monotonic relation 3, > (,-1 leads to the monotonic property S7,_; . > S}, ... Taking the
limit » — oo in the above recurrence relation for 3, gives lim (3, = 1+ 1/a. Correspondingly, this
n—oo

implies lim S}, . = X. The first few values of 3,, and S, , are listed below:

i) whenn=1,8 =1and ST __ = 1—}—1 X;

() 716 1,00 9
’ «

(ii) whenn=2,06, =1+

1+2

L+ e 1+ sy

(iii) Whenn:3,,83:1+(1+a)l+a [1—|— (1+a)1+0‘} and 53 =

Proof of Theorem 5.4, part (vi) Let D,(S,7) be the spread value of the n-shout resettable put
option. It suffices to show that D, (S,7) < D,,_1(S,7). Define the continuation of D, (S,7) as
follows

| Vu(S,T) = SP,(1), S>X
Dn(8,7) = { Vo(S.7) = Vi r(S.7), S<X.

Note that D, (S, ) satisfies

oD, o2 282 n
- —(r— : >
o 20 asr T %g Trhe 2 (S.7). Dul(S.T) 20,
oD,, ,0%D,, aD,, B
ar _75 oz~ " D5 T rDn = ha(S.7)| DulSm) =0
D,(8,0) =0

where

d
—_Se 9T 97
hn(S, 7_) — { Se ar [e Pn(T)L S>X )
0, S<X

d d d d
Due to Lemma 5.3, we have EPH(T) > EPn,l (1), so e [T P,(T)] > e [€1" P, _1(T)], implying
(S, 7) < hy—1(S, 7). The desired result is then obtained immediately by the comparison principle.
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FIGURE 1a. Plot of the value of the one-shout resettable put option against the asset value for

r < q at different values of time to expiry, 7. The parameter values used in the calculations are:

r =0.02,q =0.06,0 = 0.2 and X = 1.0. Each price curve touches tangentially the line representing

the value of the corresponding at-the-money put option.
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FIGURE 1b. Plot of the value of the one-shout resettable put option against the asset value for
r > q at different values of time to expiry, 7. The parameter values used in the calculations are:
r = 0.06,q = 0.02,0 = 0.2 and X = 1.0. The critical value of time to expiry beyond which it is
never optimal to shout is found to be 5.7121. The price curve corresponding to 7 = 6 (which is

greater than 5.7121) never touches the line representing the value of the at-the-money put option.
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FIGURE 2a. Plot of the shouting boundary of the one-shout resettable put option as a function
of time to expiry for » < ¢. The parameter values used in the calculations are: r = 0.02,q =
0.06,0 = 0.2 and X = 1.0. The asymptotic value of the critical asset price at infinite time to expiry
is found to be 1.5.

3.5 b

N
wu

(shout)

N

critical asset price

15

05 | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50

time to expiry
FIGURE 2b. Plot of the shouting boundary of the one-shout resettable put option as a function
of time to expiry for r = q. The parameter values used in the calculations are: r = 0.06,q =
0.06,0 = 0.2 and X = 1.0. The critical asset price increases monotonically with increasing time to
expiry and tends to infinity at infinite time to expiry.
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FIGURE 2c. Plot of the shouting boundary of the one-shout resettable put option as a function
of time to expiry for » > ¢. The parameter values used in the calculations are: r = 0.06,q =
0.02,0 = 0.2 and X = 1.0. The critical value of the time to expiry beyond which it is never optimal
to shout is found to be 5.7121.
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FIGURE 3a. Plot of the value of the resettable put options with the right of one, two and three
shouts against the asset value at 7 = 1, given r < q. The parameter values used in the calculations
are: v = 0.02,q = 0.06,0 = 0.2 and X = 1.0. Each price curve touches tangentially the line
representing the value of the corresponding at-the-money put option.
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FIGURE 3b. Plot of the value of the resettable put options with the right of one, two and three
shouts against the asset value at 7 = 12, given r > q. The parameter values used in the calculations
are: r = 0.06,q = 0.02,0 = 0.2 and X = 1.0. The price curve corresponding to the three-shout
option touches the value line of the corresponding at-the-money put option, while the price curves

corresponding to the one-shout and two-shout options always stay above the corresponding at-the-
money put option value lines. For the one-shout and two-shout options, 7 = 12 is larger than the
critical value of the time to expiry beyond which it is never optimal to shout.
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1.6
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FIGURE 4a. Plot of the shouting boundary as a function of time to expiry for the resettable
put options with the right of one, two and three shouts, respectively, given r» < g. The parameter
values used in the calculations are: » = 0.02,q = 0.06,0 = 0.2 and X = 1.0. The asymptotic values
of the critical asset price at infinite time to expiry are found to be 1.5,1.31 and 1.23, respectively.
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FIGURE 4b. Plot of the shouting boundary as a function of time to expiry for the resettable
put options with the right of one, two and three shouts, respectively, given r» > g. The parameter
values used in the calculations are: r = 0.06,q = 0.02,0 = 0.2 and X = 1.0. The critical values
of the time to expiry beyond which it is never optimal to shout are estimated to be 5.71,9.55 and
13.0, respectively.
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