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Abstract.

Two general coordinate systems have been used extensively in computational fluid
dynamics: the Eulerian and the Lagrangian. The Eulerian coordinates cause excessive
numerical diffusion across flow discontinuities, slip lines in particular. The Lagrangian
coordinates, on the other hand, can resolve slip lines sharply but cause severe grid defor-
mation, resulting in large errors and even breakdown of the computation. Recently, Hui
et. al. (W.H. Hui, P.Y. Li and Z.W. Li, A Unified Coordinate System for Solving the
Two-Dimensional Euler Equations, Journal of Computational Physics, Vol. 153 (1999),
pp. 596-637) have introduced a unified coordinate system which moves with velocity hq,
q being velocity of the fluid particle. It includes the Eulerian system as a special case
when h = 0 and the Lagrangian when h = 1, and was shown for the two-dimensional
Euler equations of gas dynamics to be superior to both Eulerian and Lagrangian systems.
The main purpose of this paper is to adopt this unified coordinate system to solve the
shallow water equations. It will be shown that computational results using the unified
system are superior to existing results based on either Eulerian system or Lagrangian
system in that it (a) resolves slip lines sharply, especially for steady flow, (b) avoids
grid deformation and computation breakdown in Lagrangian coordinates, and (c) avoids

spurious flow produced by Lagrangian coordinates.



1. Introduction.

Two general coordinate systems have been used extensively for describing fluid motion:
the Eulerian and the Lagrangian. Computationally, each system has its advantages as
well as disadvantages.

In using the Eulerian coordinates the computational cells are fixed in space, while fluid
particles move across cell interfaces in any direction. It is this convective flux that causes
excessive numerical diffusion in the numerical solution. Indeed, slip lines are smeared
badly and shocks are also smeared, albeit somewhat better than slip lines. Moreover, the
smearing of slip lines ever increases with time and distance unless special treatments, such
as artificial compression or sub-cell resolution, are employed [2-4] which are, however,
not always reliable. Another disadvantage of the Eulerian coordinates is that a grid
generation, which can be time-consuming, is needed prior to flow computation in order
to satisfy boundary conditions on solid boundaries.

Computational cells in the Lagrangian coordinates, on the other hand, are literally
fluid particles. Consequently, there is no convective flux across cell interfaces and nu-
merical diffusion is thus minimized. However, the very fact that the computational cells
exactly follow fluid particles can result in severe grid deformation, causing inaccuracy
and even breakdown of the computation. To prevent this from happening, the most fa-
mous Lagrangian method in use at the present time - the Arbitrary Lagrangian- Eulerian
Technique (ALE) [5-7] - uses continuous re-zoning and re-mapping to the Eulerian grid.
Unfortunately, this process requires interpolations of geometry and flow variables which
result in loss of accuracy, manifested as numerical diffusion which ALE wants to avoid
in the first place. Indeed, it was demonstrated in [8] that re-zoning results in diffusive
errors of the type encountered in Eulerian solutions and that continuously re-zoned La-
grangian computation is equivalent to an Eulerian computation. Another disadvantage of
the Lagrangian coordinates is that, except in the simple case of one-dimensional unsteady
flow, the governing equations for inviscid flow are not easily written in conservation form,

making it difficult to capture shocks correctly.
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Recently, Hui et. al. [1] have introduced a unified coordinate system which moves with
velocity hq, where q is velocity of the fluid particle. It includes the Eulerian coordinates
as a special case when h = 0 and the Lagrangian when A = 1 and, more importantly, it
has a new degree of freedom in choosing the arbitrary function A to improve the quality
of computational results. In particular, it was shown in [1] that for the two-dimensional
Euler equations of gas dynamics, choosing the function h to preserve grid angles results
in a coordinate system which is superior to both Eulerian and Lagrangian systems.

The purpose of this paper is to adopt this unified coordinate system to solve the
shallow water equations; it will be shown that computational results using the unified
system are superior to existing results based on either Eulerian system or Lagrangian
system.

The paper is arranged as follows. In Section 2 the shallow water equations in conser-
vation form are derived using the unified coordinates. Sections 3 and 4 study the cases of
one-dimensional and two-dimensional flow, respectively. Section 5 gives results for several
test examples computed using the unified coordinates and compares them with Eulerian

or Lagrangian computation. Finally, conclusions are given in Section 6.

2. Shallow Water Equations in the Unified
Coordinates.

The shallow water equations in conservation form using Cartesian coordinates are
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where g is the acceleration due to gravity, ((z,y,t) is the total water height measured

from the bottom, u(z,y,t) and v(z,y,t) are the components of the fluid velocity in the
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horizontal  and y direction, respectively, D(x,y) is the water depth from a fixed reference
level, and m and n are the components of the bottom friction force due to its roughness.

Introduce a transformation of coordinates from (¢, z,y) to (A, €,n)

dt = d\
dzr = hudX + Ad¢ + Ldn (2)
dy = hvd\ + Bd¢ + Mdn

where h is arbitrary. Let

— = —+hu— + hv— (3)

denote the time derivative following the pseudo-particle, whose velocity is hq, q =

(u,v). Then, it is easy to show

Dy Dy
. 2= 4
Dt " Dt (4)

that is to say, the coordinates (£, 7) are material functions of the pseudo-particles, hence
are their permanent identifications. Accordingly, computational cells move and deform
with pseudo-particles, rather than with fluid particles as in Lagrangian coordinates. The
concept of pseudo-particles was first introduced in [1] and it was very successful in com-
putationally resolving flow discontinuities as well as in understanding and interpreting
the computational results.

Remarks.

(a) Unlike most transformations used in grid generation, which are flow-independent,

the unique feature of transformation (2) is its dependence on the fluid velocity.

(b) In (2), h is an arbitrary function of coordinates (A,&,7). On the other hand,
(A, B, L, M) are determined by the compatibility conditions. For example, for dx

to be a total differential,

0A  0(hu)
oL  0O(hu)
o - on (6)



When (5-6) are satisfied the other compatibility condition, namely

0A OL
an % g

is also satisfied, provided it is at A = 0 which can always be ensured in numerical

computation. Similar compatibility conditions hold for (B, M).

In the special case when h = 0, (A, B,L, M) are independent of A. Then the
coordinates (£,n) are independent of time A and are hence fixed in space. This
coordinate system is thus Eulerian. Transformation (2) is then flow-independent and
is just like any other transformation from Cartesian coordinates (z,y) to curvilinear
coordinates (£,7) used in grid generation. In particular,if A= M =1 and L =

B =0, (&,n) are identical with Cartesian coordinates (z, y).

In the special case when h = 1, on the other hand, the pseudo-particles coincide
with fluid particles and (&, 7) are the material functions of fluid particles, hence are
Lagrangian coordinates. The conventional choice of the Lagrangian coordinates,
ie., (&,m) = (z,v)|s=0, is just a special choice of material functions, corresponding
to choosing A = M =1 and L = B = 0. It does not offer any particular advantage
in numerical computation; rather (£,7) should better be left to be suitably chosen to
initialize numerical computation. In particular, the computational domain in (&, 7)
space can always be easily made regular, e.g. rectangular, even if it is irregular in the
physical space. This cannot be done with the conventional choice of the Lagrangian

coordinates.

In the general case, h is arbitrary. It has been shown [1] that the unified coordinates
for h # 0 always yield sharp slip line resolution in steady flow. Furthermore, h
may be chosen to advantage: to avoid excessive numerical diffusion in the Eulerian

coordinates, and/or to avoid severe grid deformation in the Lagrangian coordinates.

Under the transformation (2) the shallow water equations (1) become

OE OF 0G
Tt =S (8)
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where

A C1—=h)I
CAu C(1 = h)Iu+ 59¢*M
(Av ¢(1 = h)Iv — 59C2L
E= A , F= —hu
B —hv
L 0
0
C(1—h)J 0
(1 = h)Ju — 59¢°B ¢ [gMD; — gBD, — mA]
¢(1 - h)Jv+ Lg¢?A C[—gLD¢ + gAD, — nA]
G= 0 S = 0 (9)
0 0
—hu 0
—hv 0
with
A=AM -BL, I=uM —vL, J=vA—uB (10)

We note that the shallow water equations (8) written in the unified coordinates are in
conservation form. We also point out that although system (8) is larger than (1), com-
putationally the extra computing time required for solving the last four equations of (8)
is very small, typically 3 — 5%, because the bulk of computing time is spent on solving
the Riemann problems for the first three equations of (8), which require same amount of
computing time as system (1).

In the remainder of this paper we shall consider only horizontal bottom and neglect

the friction term there, hence S = 0.

3. One-dimensional Shallow Water Flow.



For the special case of one-dimensional flow, transformation (2) simplifies to

dt = d\
(11)
dx = hudX + Ad¢

and the shallow water equations (8) become

g—f + 2—1; =0, (12)
where
A ¢(1 = h)u
E=| Cdu |, F=| ((1-h)pu?+ 3¢ (13)
A —hu

3.1. Hyperbolicity.

It is well known that the one-dimensional shallow water equations in Eulerian coor-
dinates are hyperbolic. But since transformation (11) involves the dependent variable u,
there is no guarantee that the resulting system (12) will necessarily be hyperbolic also;
this we now check.

The eigenvalues of (12) can be found by direct computation, and the results are:

oy = 0 (14)

or = (1_h)zim. (15)

The corresponding right eigenvectors, when the primitive variables U = (¢, u, A)T are

used, are
r; = (0,0,1)7 (16)
h
. = (1,+ g/C,ﬂFa\/g/C)T (17)

It can be shown easily that the o;-field is linearly degenerate, while the o, -fileds are

genuinely nonlinear. The eigenvectors are linearly independent, forming a complete basis
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in the state space; system (12) is therefore hyperbolic for all values of A, despite the fact
that transformation (11) involves the dependent variable u. This includes the Eulerian
coordinates as a special case when h = 0 and the Lagrangian one when A = 1. This result

is the same as one-dimensional Euler equations of gas dynamics [9].

3.2. Riemann problem.

The one-dimensional shallow water equations (12) will be solved using the Godunov
method with MUSCL update to high resolution, of which the main ingredient is the
solution of the Riemann problem.

The Riemann problem is

IE OF __
5"‘3—&—0 A>0

El7 §<0 (18)
E(0,¢) =

E, £>0

where E; andE, are the constant vectors representing the flow states on the left and the
right side, respectively. Here we shall consider the case when £ is a constant in the range
0 < h <1 With h = const., eq.(18) is a system of conservation law equations with
constant coeflicients and a solution to the Riemann problem depends on p = % alone, i.e.
it is a self-similar solution of the form E = E(u). It consists of at most four uniform flow
regions, including E; andE,, separated by three elementary waves: a shock (or expansion),
a contact line, and an expansion (or shock). These elementary wave solutions are now

given.

3.2.1. Expansion wave.

The centered expansion wave solution from the o characteristic fields can be derived

from the following system of ODEs

du

e = =l (19)



dA  _h/g/¢
d_C_:FO'j:

(20)

The solution for (u, A) relates the flow state U = ((,u, A)T in the expansion wave to the

initial state Ug = (g, uo, Ao)T upstream of the wave through the following expressions

u F 2/9¢ = uo F 2/90 (21)
L (G=C\FE . 1-h Uy
A = AO(C_CJ , Ci—3_2h(2¢<’o¢\/§)- (22)

To find the solution inside the expansion wave, we consider the characteristic ray
through the origin (0,0) and a general point (), ¢) inside the wave. The slope of the

characteristic is

dx
This, together with (21) and (22), gives (1), u(p) and A(u) implicitly; in the special case

d —h
E_%ZM:QZO )Zi\/ﬁ (23)

of h =0 or h =1, these functions can be written explicitly.

3.2.2. Shocks.

We start from the Rankine-Hugoniot jump conditions of system (18):

slcAl = [(1=h)Cu] (24)
slud] = [(1=h)cu’ + 5¢7) (25)
slA] = —[hu] (26)

where [.] denotes the jump across the discontinuity whose speed is denoted by s = %
We denote the pre-shock flow state by Ug = (Co, uo, 4¢)” and the post shock flow
state by U = ((,u, A)T, respectively. Then the shock jump relations after some algebraic

manipulations can be expressed as follows:

u = g £4/9(C + ) (€ — C0)?/(2C60) (27)
A = AO—M (28)
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where

(1= hyug , V9¢(C+G)/(2G)

Ssht =
’ Ao Ao

Formulas (27)-(28) hold for h: 0 < h < 1.

(29)

3.2.3. Contact (or slip) lines.

The degenerate wave corresponds to speed s = g; = 0. From the Rankine-Hugoniot

jump conditions (24) to (26) we have

¢ = G (30)
u = U (31)

The only variable which can change its value across this wave is A. Since the flow variables
¢ and u are continuous, there is no flow discontinuity in the form of a contact
(slip) line.

We compare here the computation of the one-dimensional shallow water flow with the
one-dimensional flow of gas dynamics. As seen from the analysis, the one-dimensional
shallow water equations have just one type of flow discontinuity - shocks, but there is
no flow contact (slip) lines which exist in the one-dimensional Euler equations of gas
dynamics. In the latter case it was shown ([9]) that Lagrangian system of coordinates is
the best for resolution of the contact lines. But with no contact line to resolve, Eulerian
and Lagrangian coordinates are on the same footing for accuracy, as is verified in our
computation. The adaptive Godunov scheme ([10,11]), which resolves shocks crisply, can
now be applied to either the Lagrangian coordinates or the Eulerian ones, or indeed for

any h.

4. Two-dimensional Shallow Water Flow.

4.1. Hyperbolicity.
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It is well known that the system of unsteady shallow water equations (1) in Carte-
sian coordinates is hyperbolic, meaning that all its eigenvalues are real and there exist
a complete set of linearly independent eigenvectors. Because the transformation from
(t,z,y) to the unified coordinates (A, £, n) involves the dependent variables (u,v), there is
no guarantee that the resulting system (8) will necessarily be hyperbolic. We now study

the hyperbolicity of the system (8). To do that we re-write the system (8) as

ou ou ou

where

¢ 0
0
v 0
A uhe (33)
B vhe
L

M

e

uhy,

vhy

and

OE OF oG
A=350 B v ©~ 3w

System (32) is said to be hyperbolic (also called strongly hyperbolic, or fully hyperbolic)
in A if [12]

(34)

(i) all the eigenvalues o of

det(cA —aB — C) =0
are real for every pair (o, 8) € R?: o + 32 = 1; and

(ii) associated with the eigenvalues there exist a complete set of seven linearly indepen-

dent right eigenvectors in the state space.

System (32) is said to be weakly hyperbolic in A if (i) is satisfied and (ii) is not.
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The eigenvalues of (32) can be found by direct computation, and the results are as
follows:
Case (a): h# 1. In this case we get
op = 0 (multiplicity 4) (35)
oy = (1—h)(du+ 3'v) (36)

or = 09 t14/9C(a? + 37). (37)

where

o = (aM — BB)/A, B = —(aL — BA)/A.

The corresponding right eigenvectors are

r, = (0,0,0,1,0,0,0)T (38)
r, = (0,0,0,0,1,0,0)7 (39)
rs = (0,0,0,0,0,1,0)7 (40)
r, = (0,0,0,0,0,0,1)7 (41)
for oy,
h  h h . h
rs = (0,8, —d,——af, —ad', —= B4, —p)T (42)
b p B
for 09, and

o/g B'g —ad/gh —af'gh —Bd'gh —BB'gh.r
Te7 = (17 Ty Ty ) ) ’ ) (43)
’ My M4 O4M4 ~ O+My  O1M4  O4M4

my = +4/9¢(” + B7)

The eigenvectors ry, ry, ..., r7 are linearly independent, forming a complete basis in the

for o, where

state space; system (32) is therefore hyperbolic for A # 1. This includes the Eulerian
coordinates as a special case when h = 0.

Case (b): h =1 (Lagrangian case). In this case the eigenvalues are
oo = 0 (multiplicity 5) (44)
or = H/gC(c? + 7). (45)
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The eigenvectors associated with o, are

_q, ﬂ ﬂ_’g —ad'g —af'y —Po’'g —BP'g 9yr
’ ) 2 ) 2

46
oy oy 0% ol ol ol (46)

Associated with o; = 0 (multiplicity 5),

rank(cA — aB — ﬂC)‘ = 3;

ag=01

hence there exist four, and only four, linearly independent right eigenvectors:

r, = 0,0,1,0,0,0)T 47

o, ) (47)
r, = (0,0,0,0,1,0,0)T (48)
r3; = (0,0,0,0,0,1,0)7 (49)
(0,0,0,0,0,0,1)7, (50)

ry =

We therefore arrive at the conclusion that the system of unsteady 2-D shallow
water equations in Lagrangian coordinates is weakly hyperbolic, lacking one
eigenvector although all eigenvalues are real. It is interesting to note that the similar
results were obtained in the gas dynamics case, namely, the two-dimensional and three-
dimensional Euler equations written in the unified coordinates are hyperbolic for any h,
0 < h < 1, but they are only weakly hyperbolic for A = 1 (Lagrangian case).

In summary, use of Lagrangian coordinates in CFD for two-dimensional shallow water
equations not only can cause severe grid deformation, but also renders the two-dimensional
shallow water equations weakly hyperbolic, with all its possible consequences on numerical

computation. More will be said about the Lagrangian case in section 4.4 below.

4.2. Determination of h.

As mentioned earlier, the chief advantage of the unified coordinates is the new degree

of freedom in choosing h. Many choices are possible and the simplest one would be
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to choose a constant value for it, as was done in section 3. Numerical experiments for
constant h will be presented in section 6 to show its effects on grid deformation and on
resolution of flow discontinuities. In general, it is necessary to restrict A to within the
range 0 < h < 1. For h > 1, the eigenvalue oy in (36) has an opposite sign to that for
h < 1, indicating signals propagate in the wrong direction. Our computations for h > 1
break down immediately. On the other hand, for A < 0, which means the pseudo-particles
are moving in the opposite direction to the fluid particles, computation can be carried out
initially but after some finite time it breaks down also. No difficulty has been encountered
in all our computations if h is restricted to 0 < h < 1.

As shown in [1], a good choice for h is to preserve the grid angles in the solution

process which marches in A, i.e.

alvg W]:O 61)

X V€] v

Since

Ve = (M,—L)/A
Vi = (=B, A)/A (52

condition (51) becomes

Kl l AL+ BM l _ (53)
OX | VA2 4+ B2/ L2 + M?
By making use of the last four equations of (8), it is easy to show that (53) is equivalent
to
52’]2_]; + TQIZ—Z = lSQ (BZ_Z — AZ—Z) — T2 (Mg—:; — LZ—Z)] h (54)
where
S?=1*+M? T?=A+B? (55)

A consequence of determining h from (54) is that if the grid is orthogonal at A = 0
it will remain so for subsequent A. Orthogonal grid is known to possess many desirable

properties over non-orthogonal grids, e.g. attaining higher accuracy than non-orthogonal
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grids. Computationally, Eq. (54) is to be solved at every time step after the flow variables
Q = (¢, u,v)T and the geometric variables K = (A, B, L, M)T are found. It is thus a first
order linear partial differential equations for h(&,n; ), with A appearing as a parameter.
To find solution A in the range

0<h<l1 (56)

we note that (54) is linear and homogeneous, therefore it possesses two properties: (a)
positive solution h > 0 always exists, and (b) if A is a solution to (54) so is h/C, C being
any constant. Making use of property (a), we let g = In(hq) to get

. dg . dg
2 _ g9 2 _ og
S“(Asinf Bcosﬁ)af-l—T (M cos @ Ls1n0)a77
Jcost OJsinf dcosf OJsin @
= 52 — —-T? M —L
5 (B 0¢ 4 0¢ > ( on on > (57)

where ¢ = vu2 4+ 02 and 6 is the flow angle: u = gcosf,v = ¢sinf. Now, if g; is any
solution to (57) then h = e9'/qC is a solution to (54) satisfying condition (56), provided
we choose C' equal to the maximum of e9'/q over the whole flow field being computed.
The reason to work with In(hgq) instead of In A is that from our experience with steady flow
[13], hq is continuous across slip lines, hence working with hq can minimize the numerical
errors.

Numerically, Eq. (57) is solved easily by the method of characteristics if their slopes

do not change sign; otherwise it is solved by iteration.

4.3. Solution trategies.

As the system of shallow water equations (8) written in unified coordinates is in
conservation form, any well-established shock-capturing method can be used to solve it.
We shall use the Godunov method with the MUSCL update to higher resolution to solve
system (8). The computation will be done entirely in the A—& —n space. A physical cell in
the x —y plane marching along the pseudo-particle’s pathline corresponds to a rectangular

cell in the £ — i plane marching in the A direction in the computational space A — & — 7.
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The superscript k£ refers to the marching time step number and the subscripts ¢+ and j
refer to the cell index number on a time plane A = const. The time step AN = N+l _ )\#
is uniform for all ¢ and 7, but is always chosen to satisfy the CFL stability condition.
The grid divides the computational domain into cubic control volumes, or cells, which in
¢ and 7 direction are centered at (A*,¢;,7;) and have widths A& = &1/ — &i_1/2 and
An; = nj4172 — nj—1/2 (for all k). Unless otherwise stated we shall use uniform cell width
Ag; for all ¢ and Ay, for all j.

In the physical space (¢, z,y) a cuboid cell marching in (), &,n) space corresponds to
a pseudo-particle marching along its path tube with step At (At = A)). The pseudo-
particle is bounded by four path surfaces £ = §+1/2 and 1 = 7;+1/2 around it. Initially,
any curvilinear coordinate grid on the z — y plane may be used as the & — 5 coordinate
grid and the initial geometric variables K = (A4, B, L, M)T can be determined from (2)
as part of the initial conditions. A stationary solid wall is always a path surface of the
fluids and hence also of the pseudo-fluids; it is therefore a coordinate surface of the unified
coordinates.

Applying the divergence theorem to (8) over the cuboid cell (i, j, k) results in

A)\k k+1/2 k+1/2 A)\k k+1/2 k+1/2
Eij =B - AL (Fiiies = Filing) — An; (Gl —Gil), ()
] J

i = 1,2,...,m; j=1,2....n, (59)

where the notation for the cell-average of any quantity f is

=y [ [ 0 e, w
and the notation for A-average of f is:
Iy 1 A+l
fi+1/2,j = A—)\k/xc f()‘vfi+1/2777j)d)‘a (61)
k12 1 A+l
fijiie = A—)\k/xe F &> Mj1/2)dA. (62)

According to Godunov’s idea, the cell-interface fluxes Fz:11/22 ; and G ;’i{% for the

cell (i,7) are to be obtained from the self-similar solution of a local two-dimensional
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Riemann problem formed by the averaged constant state E; ; of the cell (i, 5) and those
of its adjacent cells. Unfortunately, such a solution to (8) is unavailable at present time.
Indeed, even a 2-D Riemann solution to the simpler system (1), which is a special case
of (8) when h = 0, is not yet available. On the other hand, it is known that a monotone
difference scheme to a general conservation form converges to the physically relevant
entropy-satisfying solution. In particular, Crandall and Majda [14] proved convergence for
dimensional splitting algorithms when each step is approximated by a monotone difference
scheme (such as the Godunov scheme) for a scalar conservation law in multi-dimension.

In view of the above, we shall numerically solve (8) using a Godunov-type scheme
based on the dimensional splitting approximation to reduce the two-dimensional flow
problem to two one-dimensional flow problems.

The dimensional splitting technique for finding an approximate solution to the Rie-
mann problem in multi-dimensional flow is now well established and used widely. This
technique renders the solution of a multi-dimensional problem to a sequential solution of
several one-dimensional problems. The Godunov splitting and the Strang splitting [15]
are frequently used in practical applications. We shall use the Strang splitting in this
paper. Let ﬁi)\ represent the exact solution operator for the 1-D equation in A — £ plane

and L}, similarly defined, then according to Strang splitting
BN = £, £4,L5, B (63)
2 2

where A\ = \Ft1 — \F,
The solution operator ﬁi)\ for the Riemann problem with variable coefficients in the

governing equations in A — & plane will now be given in details.

4.4. The Riemann problem resulting from dimensional split-

ting of the two-dimensional shallow water equations.

With the use of dimensional splitting, the solution of the original two-dimensional

equation system is replaced by the sequential computation involving two one-dimensional
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equation systems. We consider in details the resulting Riemann problem in the A - &
plane; that in the A - 5 plane can be discussed similarly.

In the £¢ operator, it is assumed that % = 0. Hence (8) becomes

g—];\) + 88—1; =0 (64)
where i i i i
A Qe
CAu C(1— h)Iu+ 39¢°M
(Av ¢(1— h)Iv — 39¢2L
E=| A4 |, F= —hu (65)
B —hv
L 0
| M L 0 |
with
A =AM — BL, I =uM —vL (66)

We rewrite (64) by using the component of velocity q in the direction n normal to, and

t tangential to the plane & = const., i.e.

V§

n:W:(M,—L)/S, t=(L,M)/S (67)
w = q-n=(uM—-vL)/S (68)
T = q-t=(ulL+vM)/S (69)
where
S = (L*+ M?*)'/? (70)

Hereafter we shall abandon the last two equations of system (64), keeping in mind that
L = L(¢) and M = M(£) are given.

Equations (64) now become
OE OF
oS (™)
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where

L cn ] L a-hw | _ 0 _
(Aw ¢(1 = h)w® + %g@ C(1—h)wr
E=|¢Ar |, F=S5 C(1 = h)wr : S2=%%S C(1 = h)w? + Lg?
A —h(Mw + L7)/S? 0

| B | | h(Lw—MT)/S? | i 0 ]

(72)
where

tan ¢ = M/L (73)

Equations (71) in the A—¢ plane resulting from dimensional splitting of the two-dimensional
equations (8) are more complicated than the genuinely one-dimensional equations (12),
and the solution to their Riemann problem is explained below.

The Riemann problem resulting from dimensional splitting in the unified coordinates

in A - £ plane is now

%4‘%—?:82 A>0

El7 §<0 (74)
E(0,¢) =

E., £>0

where E; and E, are constant, and our purpose is to find the flux F on £ = 0 to be used
in the Godunov scheme to update the conserved quantities E. At time level \* (taken
to be equal to 0) h, and h; are the values of h at the cell (i + 1,5) and (4,5). They are

assumed constant for 0 < A < A, i.e.

g—];=0 (0 <A< AN (75)
and this is consistent with the h - equation (54). But h changes its value at A = A\ as
given by (54), whose coefficients are evaluated at A\,

Now we first find all possible solutions to (71) for £ > 0 and £ < 0 separately, and

then use them to construct solution to the Riemann problem (74).

Case (1): £>0
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Since L = L, = const. and M = M, = const., hence S = S, = const., ¢y = ¢, =

const., therefore

Sy =0 (76)
and
{%"j+%’§=o A>0, £€>0 )
E(0,¢) =E, £E>0
where ) ) ) )
A ((1— hyw
(Aw (1= h)w? + 39¢2
E=|¢Ar |, F=S C(1—h)wr (78)
A —h(Mw + L1)/S?
B h(Lw — MT)/S?
with h = h, = const.. Similarity s-olution to (7 7) exists in the form-
E = E(u), p=t (79)

Possible solutions to (77) are:

(i) a constant state: E = const.;

(ii) a centered expansion wave;

(iii) a shock;

(iv) a contact (slip) line.

Let us first find the eigenvalues and the corresponding right eigenvectors of the system
(77).

For smooth solution system (77) can be written as

oU  _oU _

o e (80)
where U = ((,w,7,4,B)T, A = g_IEJ and B = g—g.

In order to obtain the eigenvalues ¢ we need to find the determinant of the matrix

(0 A — B). Direct computation gives
det(cA — B) = o*>m(*(m? — S*Cg), m=ocA - S(1 — h)w (81)
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Case (1a): h # 1. From the vanishing of this determinant we get our eigenvalues.

oo =0 (multiplicity 2) (82)
S

oy = Z(l—h)w (83)

oy = %{(1—/1)@01\/&} (84)

We emphasize again that S = S, = const. and h = h, = const., h # 1. The corresponding

set of right eigenvectors is

r, = (0,0,0,0,1)7 (85)
r, = (0,0,0,1,0)" (86)
hL  hM
= 1, ——— —— )T
r3 (0,0,1, Soy’ o, (87)
g hM g . hL [g.p
= (L, £4/2,0, Foty|2 Fay]>

Since the eigenvectors (85-88) are linearly independent, system (77) is hyperbolic. To

classify the characteristic fields, we see that

Voi-r12=0 (89)
and

Vos 13 =0, (90)
implying that characteristic fields corresponding to the o, » and o3 are linearly degenerate.

On the other hand,

.8 [g S(1—-h) o+M oL

and
35

Therefore the o, characteristic families are genuinely nonlinear.
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Case (1b): h =1 (Lagrangian case). In this case the eigenvalues are

op = 0 (multiplicity 3)
S
o4+ = + Z \/&

The eigenvectors associated with o, are

g MA LA,
= (1,%4/2,0, — =) o>
r:l: ( ? 4-707 5247524)

Associated with o; = 0 (multiplicity 3),

rank(cA — B)‘ = 3;

o=01

hence there exist two, and only two, linearly independent right eigenvectors:

r; = (0,0,0,1,0)7

r, = (0,0,0,0,1)7.

(95)

(96)
(97)

We therefore arrive at the conclusion that system (77) resulting from dimensional

splitting of the two-dimensional equations in Lagrangian coordinates is weakly

hyperbolic, lacking one eigenvector although all eigenvalues are real. This is in direct

contrast to the genuinely one-dimensional flow case, Eq.(12), which is hyperbolic for all

values of h, including the Lagrangian case (h = 1). Despite this defect, most of our

computations with A~ = 1 encounter no difficulty and produce results almost identical to

that for A = 0.999, for which (77) is hyperbolic. But this is not guaranteed, and we shall

present computational results for the case h = 0.999 instead of h = 1.

We shall now give solutions to the elementary waves in details: the expansion wave,

the shock wave and the slip line. These solutions will be used in constructing the Riemann

solution to (74).

4.4.1. Expansion wave.
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The expansion wave is a smooth solution from the o, characteristic fields which can

be derived from the following system of ODEs.

dw g

% = + c (98)
dr

d_C =0 (99)
dA hM [g

@© = :FE c (100)
dB " hL g (101)

¢ T Sox\¢

The solution for (w,T) relates the flow state Q = (¢,w,7)T in the expansion fan to

the initial state Qo = ({o, wo, To)T upstream of the fan through the following expressions

w = woF2(/96 —/90) (102)

T = T (103)

Note that on crossing the expansion fan, these relations are independent of K, and h,.
To find the solution inside the expansion fan, we consider the characteristic ray through
the origin (0,0) and a general point (), &) inside the fan. The slope of the characteristic

1s

d S
£=§=ai= {0~ R = /o0 (104)
Using the above expression and the equation for w in (102), we get
1 NIk
= |1- 2 ~ =5 1

where A = AM — BL is found from (100) and (101) to be a function of ¢:

2h
Go—Cy\¥ 1-h wo
A=A Cy = 2 =), 106
(228)T cmggevas (106)
Eq.(105) together with (106) thus defines an implicit function ¢(k), p = §. Eq.(106)

reduces to the 1-D case, Eq.(22), when L = 0 and M = 1. The expressions for w and 7
in terms of y can be obtained simply via (102-103). Like ¢, they depend on (K, h,), but
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at p = % = 0 they depend only on h,. The variations of A and B across an expansion
fan can also be obtained from (100) and (101), but they are not needed in calculating the

flux (the flux function F does not involve A or B; it involves only L and M).

4.4.2. Shock waves.

From the Rankine-Hugoniot jump conditions of the system (77), we get

S{ea] = (=] (107)
sdenw] = (¢ -nt+ L) (108)
s[CAT] = [C(1 — h)wTS] (109)
SA] = ~[o(Mw+ L)) (110)
s[B] = [%(LW—MT)] (111)

where [.] denotes the jump across the discontinuity whose speed is denoted by s = %.

The shock jump relations after some algebraic manipulations can be expressed as follows:

e (112)
— 9(¢ + Co)(€ = Co)?

w = O:I:\/ e (113)

T = 1. (114)

We note that the relations of the flow variables ({,w, T) across the shock are independent
of K, and h,, but the slope of the shock wave s is dependent on K, and h,. But this
dependence is not needed in finding the water height ¢, and hence (w, ) also, at u =0
provided only that s > 0. (If s < 0, the shock wave will appear in the quadrant (£ < 0,
A>0)).

Note that the jumps of A and B across a shock may also be obtained from (110) and
(111), but they are not needed in calculating the flux F at p = 0.

4.4.3. Slip lines.

For the slip line corresponding to the speed s = 05 = Aio(l — h)wy > 0 we find, from
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Rankine-Hugoniot jump conditions (107-111),

¢ = G (115)
w = wp (116)

but 7 and A, B may jump arbitrarily.

We note again that, except the speed s, the relations (115-116) across a slip line are
independent of (K, h,). Although s depends on (K, h,), the dependence is not needed
in calculating ((,w, ) and the flux F at u = 0, provided s > 0. (If s < 0, the slip line
appears in the quadrant (£ < 0, A > 0)).

The flow across the slip line corresponding to s = 012 = 0 cannot be discussed within
the quadrant (£ > 0, A > 0) alone.

Case (2): £ <0.

The solution in the quadrant (¢ < 0, A > 0) can be obtained similarly.

Case (3): Riemann solution in —oo < ¢ < +oc.

Now, after obtaining all possible solutions for & > 0 and £ < 0 separately the question
is how to construct the solution to the Riemann problem for A > 0, —o0 < € < +00. We
note that at £ = 0: a) Sy in (71) is a delta function; b) the coefficients in E and F jump
discontinuously. These are the difficulties one would face with within the Eulerian system
using curvilinear coordinates rather than cartesian coordinates.

The o1-field is linearly degenerate and it corresponds to s = 0 in (107-111). These
are five equations relating three jumps of ¢, w and 7 and, therefore, in general have no
solution, except when h, = h;, L, = L; and M, = M;. In the latter case, there is a unique
solution: the trivial solution [(] = [w] = [7] =0, i.e. a continuous solution.

To avoid the difficulty of non-existence of solution to the Rankine-Hugoniot relations
(107-111), we replace both h; and h, by their average, i.e. by = h, = 0.5(h; + h;) = h,
and similarly replace L; and L,, M; and M, by their averages M and L, respectively.
Consequently, the Rankine-Hugoniot relations are satisfied and the flow is continuous

across y = % = 0. We note from previous discussions that these replacements do not alter
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the relations of the flow variables (¢,w,T) across the elementary waves: (the expansion
fan, the shock, and the slip line) as they do not depend on (K, h). It should be pointed
out that the replacements of I; and L, by L and M; and M, by M are a fictitious one
- they are used only to ensure the existence of solution to (107-111) - but these average
values are never used in the computation. On the other hand, the replacement of h; and
h, by h is a real one: it is used in equation (105) when the line p = £ = 0 is inside the
expansion fan which is, however, a rare case.

The Riemann solution for —oco < € < 400 can now be constructed in the usual way
as if the slip line corresponding to s = 0, = 0 did not exist: shock (or expansion fan),

slip line, expansion fan (or shock), separated by uniform flow regions.

5. Test Examples

In this section the unified coordinates approach is tested numerically on several ex-
amples. The flat bottom case is considered with zero roughness coefficients m and n. In
all cases the effects of h on the computational robustness and accuracy are discussed

Example 1. The first problem is purely one dimensional two-dam break problem.
In a long channel three different heights of still water are separated by two dams, of which
one is located at x = 0.8 and the other at x = 1.2 (Fig.1a). At ¢ = 0 the dam located at x =
0.8 is broken instantly and completely, resulting in an expansion wave moving upstream
and a bore (shock) rushing downstream (Fig.1b,c,d). The bore (shock) then reaches the
second dam (z = 1.2) at some time later, triggering it to break completely and resulting in
a stronger bore (shock) moving downstream and another expansion wave moving upstream
(Fig.1le,f,g). It is difficult for ordinary shock-capturing schemes to accurately compute this
problem due to the interaction of the first bore (resulting from the rapture of the first
dam) with the second dam. All conventional numerical schemes([16,17,18]) smear the first
bore, thus giving only its approximate location (Figs. 4,5). Consequently, it is impossible

to determine the exact time of breaking of the second dam. In our computation the
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shock-adaptive Godunov method ([10,11]), which gives infinite bore resolution, is applied
and this difficulty is avoided. The time when the second dam breaks is found to be 0.2375

Figures 1 and 2 show the evolution of water height and velocity with time. We note
that after the breaking of the second dam, the water velocity increases significantly (Fig.
2d,e,f). This combination of the strong bore moving with high velocity can be potentially
destructive. Comparisons between exact solutions and computed ones at the time ¢ = 0.1
(after the first dam broke) and the time ¢ = 0.3375 (0.1 time units after the second dam
broke) are presented on the Figure 3. Figure 4 presents computed results for water height
and velocity at £ = 0.22 using ordinary Godunov scheme with MUSCL update. We note
that smeared shock reaches the second dam prematurely. It is seen in the Figure 5 that
with ordinary shock-capturing method the shock is smeared, though its average location
is correct, as expected. It is also seen that the shock-adaptive Godunov scheme perfectly

resolves the bore, giving its exact location. In all computations we use h = 0 (Eulerian).

Example 2. This example, known as Salzman problem in gas dynamics, is pre-
sented to show the role an irregular grid plays in producing spurious flow. The problem
consists of a rectangular channel (Fig.6) whose walls form reflective boundaries. The

initial data are

¢ =40, w = T.4246 v =00 z<0
¢ =10, uw=0.0 v =0.0 0<z<1

They are chosen in such way that the discontinuity, initially located at = 0.0, will result
in a plane shock propagating at the speed equal to 9.899 in the x direction. The initial
grid has 10 uniform cells in the y-direction (0.0 < y < 0.1) and 100 non-uniform cells in
the z-direction (0 < z < 1). The coordinates of the cell centers are (Fig.6)

(i — 1)
100

zi; = (I—1)*x A4 (11 —j) * A xsin

i = 1,..,101 j=1,..,10
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where A = 1/100. We shall perform computation for h = 0.999 and grid-angle preserving
h. Figure 7 presents resulting grid (7a) and water height (7b) for the case h = 0.999
at the time ¢ = 0.06, which is several time steps before the computation breaks down.
As we can see this grid is highly deformed near the position x = 0.5 behind the shock.
Looking at the velocity vectors (Fig.7c) we see that there is a presence of spurious flow:
the y-component of velocity (especially near z = 0.5) and hence vorticity which, in turn,
affects the grid and the water height (Fig.7a,b).

Similar results of spurious flow production were reported by Dukowicz and Meltz in [19]
where it was found that Lagrangian coordinates do not preserve the one-dimensionality
of a plane shock but produce spurious vorticity. They successfully introduced a technique
to filter out the spurious vorticity, while retaining the real one, if present. We have found
that the spurious flow can be avoided automatically by using unified coordinates with
grid-angle preserving h. The results are presented in Fig.8. Here we note that although
the vertical component of velocity is still present (Fig.8¢c), especially near the shock, it is
very small and is not magnified during the computation. These results (Fig.8) are almost
identical to those of gas dynamics case in [19], which requires a special technique to filter
out the spurious vorticity.

Example 3. The next example is a two-dimensional steady Riemann problem

generated by two uniform parallel flows as

(1,4,0)  y>0.5

(¢, F,0) =
(2,2.4,0) y< 0.5

where F is the Froude number and 6 the flow angle, § = tan~!(v/u). The flow contains
a shock wave, a slip line and an expansion wave (Fig. 9). The slip line is sensitive to
the dissipative property of the numerical methods. In [20,21] the problem was solved
numerically using a generalized Lagrangian method which perfectly resolves slip lines.
However, that method is valid only for steady flow, whereas the method in this paper is
valid for unsteady flow as well. Since the analytical solution for the problem is available,

it is an excellent benchmark problem for the verification of numerical methods. In the
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computation, the steady flow is achieved by time marching until the flow structure and
the variables do not change with time. A grid of 60 x 100 with A¢é = Anp = 0.01 is
employed in the computation. Initially, a grid with Az = Ay = 0.01 in the physical plane
is laid over a domain of {0 < z < 0.6,0 < y < 1}. The initial data are given at each
cell according to its position in y > 0.5 or y < 0.5, representing cell-averaged values. The
physical domain will change with time according to the pseudo-particle’s velocity hq if
h is not zero. If we follow the computational cells (pseudo-particles), they will move out
the initial physical domain, and it would be difficult to have a steady state of flow in the
original physical domain. To avoid this, a special technique called “motionless viewing
window” is applied as in the classical Lagrangian method. Accordingly, the column of
cells which have moved out of the original physical domain to the right are deleted, while
a new column of cells are added at the input flow boundary on the left.

In the Figs 10 to 12 we show computed Froude number distributions using our unified
code for h = 0,h = 0.5 and A = 0.999, compared with the exact solutions. The poor
resolution of the slip line seen in Fig.10 is a common feature of any method based on
Eulerian coordinates, as a result of Godunov averaging across slip lines which, in general,
do not coincide with the (Eulerian) coordinate lines. A comparison of Figs. 10 to 12 also
shows that the slip line resolution improves with increasing A from h = 0 to h = 0.999,
as expected.

Fig. 13 shows the computed Froude number using the grid-angle preserving h as deter-
mined by Eq.(57), which is solved at each time step using the method of characteristics.
We see that its slip line resolution is almost as sharp as that for h = 0.999 and it is much
better resolved than those for h = 0 and A = 0.5.

All the computations started with the Eulerian grid (Fig. 14). The flow-generated
grids, i.e. the lines joining the cell centers, at steady state are shown in Figs 15 to 17.
We note that: (a) the grid using grid angle preserving h is everywhere orthogonal, (b)
the grids for h = 0.5 and h = 0.999 are severely deformed near the slip line, and such

grid deformation, although doesn’t bring any troubles in the present example, can cause
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inaccuracy in other steady flows [1] as well as for the unsteady flows; see example 2 above

and the following examples.

Example 4. The next example is the ”implosion /explosion” problem, so called by
analogy with gas dynamics. It is an unsteady problem in a two-dimensional container.
Initially, two regions of still water are separated by a cylindrical wall (radius 0.2) centered
in the 1 X 1 square domain shown in Fig. 18. The depth of the water is 0.1 within the
cylinder and 1 outside. At ¢ = 0 the wall is removed and the resulting flow is investigated.
Initially, a uniform rectangular grid 100 x 100 with A{ = Anp = Az = Ay = 0.01 is
given (Fig.19). We test this example with A = 0, h = 0.5, h = 0.999, and the grid-angle
preserving h. When h = 0.999, the code can run only until ¢ = 0.04; soon afterwards
it breaks down. This is because the computational cells literally move with the fluid
particles and for large h, become severely deformed. If we reduce h, say A = 0.5, the code
can run longer until ¢ = 0.08 when it, too, breaks down. This shows that smaller 4 can
delay the severe cell deformation, but cannot remove it. With the grid-angle preserving
method, which keeps the grid regular, the code can run for very long time without any
indication of severe grid deformation. Figures 20-22 give the grids at ¢ = 0.04 for different
cases. We see that irregular grids prevail when h is constant and a regular grid prevails
when the grid-angles are preserved (Fig. 22).

The surfaces of water height for different times are presented in the Fig.23. The
physical behaviour of the flow is clearly captured in these pictures. After the wall is
removed, the cylindrical shock moves inside the lower level region and the expansion wave
propagates towards the walls (Fig.23a,b,c). At around time ¢ = 0.0565 the shock collapses,
resulting in a spectacular rise of water level near the center (Fig.23d). In subsequent
times the water height decreases in the central region manifesting in cylindrical shock
wave propagating now towards the walls (Fig.23e,f,g,h). This process of the water in the
central region going up and down repeats itself continuingly, but with more moderate
height and depth. We see in the Fig.23b,c,e that the column of water does not have

perfect circular shape, as one would expect to have, but has wavy shape. It was shown
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in [22] that this behaviour is a consequence of using a rectangular grid.

Example 5. Finally, we test our code on the two-dimensional dam breaking prob-
lem. This test case was computed in, for example, [23,24].

Two levels of still water in the 1.4 X 1 basin are separated by a dam at the position
z = 0.7 (Fig.24). The initial height ratio is 10, with values of ¢ = 1 and ¢, = 0.1 on two
sides of an idealized dam that has been represented as a mathematical discontinuity in
water. At time £ = 0 water is released into the lower level side through a middle third of
the dam, forming a wave that propagates while spreading laterally. At the same time, an
expansion wave spreads into the reservoir.

A 140 x 100 rectangular grid was chosen in this case. We have performed the computa-
tion for A = 0.999 and for grid-angle preserving h. Figure 25 represents the flow-generated
grid in the case h = 0.999 at time £ = 0.04. The grid is severely distorted by the same
reason as in the previous example, and, soon after that time the computation breaks
down. The computation using grid-angle preserving h is stable, producing results for
much larger time. In the Figure 26 we present a computed grid which is fairly uniform
everywhere even at time £ = 0.15. The surface elevation of the water height is given in

Figure 27, describing the flow in details which are similar to those in [23,24].

6. Conclusions.

In this paper we have successfully adopted the uniform coordinates of Hui et.al. [1] for
the shallow water equations. It has been tested on large number of problems and found
that with the free function A in the unified coordinates chosen to preserve grid angles, the
unified coordinate system is superior to both Eulerian and Lagrangian systems in that: (a)
it resolves slip lines as sharply as the Lagrangian system, especially for steady flows, (b)
it avoids the severe grid deformation of the Lagrangian system which causes inaccuracy
and breakdown of computation, (c) it also automatically avoids spurious flow produced

by the Lagrangian system. Additionally, it was also found that the two-dimensional shal-

32



low water equations in Lagrangian coordinates are only weakly hyperbolic, with possible

defects in numerical computation.
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