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Figure 1: Evolution of water height in the two-dam problem. Shock-adaptive Godunov
scheme. h =0 (Eulerian). (a) ¢ =0.0 (b) t =0.1 (¢c) t =0.15 (d) t = 0.2 (e) t = 0.25 ({)
t=0.3 (g) t =0.35.
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Figure 2: Evolution of particle velocity in the two-dam problem. Shock-adaptive Godunov
scheme. h =0 (Eulerian). (a) ¢t =0.1 (b) t =0.15 (¢) t = 0.2 (d) t =0.25 (e) t = 0.3 ({)
t = 0.35.
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scheme. h = 0 (Eulerian).
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Figure 4: Water height and particle velocity at ¢ = 0.22. Godunov scheme.
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Computed solution to Salzman problem. ¢ = 0.06, grid-angle preserving h.

Figure 8:

(a)Flow generated grid; (b)Contours of water height; (c)Velocity distribution.
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Figure 9: Sketch of a steady Riemann problem.
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Figure 10: Froude number distribution in a steady Riemann problem computed by the

present unified code, h = 0 (Eulerian).
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Figure 11: Froude number distribution in a steady Riemann problem computed by the

present unified code, h = 0.5.
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Figure 12: Froude number distribution in a steady Riemann problem computed by the

present unified code, h = 0.999.
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Figure 13: Froude number distribution in a steady Riemann problem computed by the

present unified code with s chosen to preserve grid angles.
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Figure 14: Eulerian (h = 0) grid, also used as initial grid for all cases in the steady

Riemann problem.
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Figure 15: Flow generated grid in steady Riemann problem, A = 0.5.
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Figure 16: Flow generated grid in steady Riemann problem, h = 0.999.
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Figure 17: Flow generated grid in steady Riemann problem, h chosen to preserve grid

angles.
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Flow state at t=0.0
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Figure 18: The initial state for the ”implosion/explosion” problem.
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Figure 19: The initial grid for the ”implosion/explosion” problem.
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Grid at t=0.04 (h=0.5)
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Figure 20: Flow-generated grid at ¢ = 0.04 in an ”implosion/explosion” problem; h = 0.5.
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Grid at t=0.04 (h=0.999)
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Figure 21: Flow-generated grid at ¢ = 0.04 in an ”implosion/explosion” problem; h =

0.999.
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Grid at t=0.04 (Angle preserving h)
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Figure 22: Flow-generated grid at ¢ = 0.04 in an ”implosion/explosion” problem; grid-

angle preserving h.
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Figure 23: Evolution of water height with time in an ”implosion/explosion” problem;
grid-angle preserving h. (a) ¢ = 0.005, (b) ¢ = 0.045, (c) t = 0.05, (d) t = 0.0575, (e)
t=0.075, (f) t =0.1, (g) t =0.125, (h) t = 0.2,
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Figure 24: The initial state for the 2-D dam break problem.
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Grid at time = 0.04 (h=0.999)
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Figure 25: Flow-generated grid at ¢ = 0.04 in an 2-D dam break problem; A = 0.999.
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Grid for angle preserving h; time = 0.15
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Figure 26: Flow-generated grid at ¢ = 0.15 in an 2-D dam break problem; grid-angle

preserving h.
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Figure 27: Water height at ¢ = 0.15 after breaking of the dam in an 2-D dam break

problem; grid-angle preserving h.
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