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It is well-known that the use of Fulerian coordinates for shock capturing
methods results in badly smeared slip lines, and that Lagrangian coor-
dinates, while capable of producing sharp slip line resolution, may result
in severe grid deformation, causing inaccuracy and even break down of
computation. A unified coordinate system is introduced in which the flow
variables are considered as functions of time and of some permanent identi-
fication of pseudo-particles which move with velocity hq, q being velocity
of fluid particles. It includes the Eulerian coordinates as a special case when
h = 0, and the Lagrangian when h = 1. For two-dimensional inviscid flow,
the free function h is chosen so as to preserve the grid angles. This results
in a coordinate system which avoids the excessive numerical diffusion across
slip lines in the Eulerian coordinates and avoids severe grid deformation in
the Lagrangian coordinates, yet it retains sharp resolution of slip lines, es-
pecially for steady flow. Furthermore, the two-dimensional unsteady Fuler
equations of gasdynamics in the unified coordinates are found to be hyper-
bolic for all values of h, except when h =1 (i.e. Lagrangian). In the latter
case the Euler equations are only weakly hyperbolic, lacking one eigenvec-
tor, although all eigenvalues are real. The consequences of this deficiency
of the Lagrangian coordinates are pointed out in connection with numerical

computation.
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1. INTRODUCTION

For over two hundred years, there exist two different coordinate systems for de-
scribing fluid motion: the Eulerian one describes fluid motion at fixed locations,
whereas the Lagrangian one does so following fluid particles. Accordingly, the Eu-
lerian description considers velocities and other properties of fluid particles to be
functions of time and of fixed space coordinates. By contrast, the Lagrangian de-
scription considers the positions of fluid particles and their other properties to be
functions of time and of their permanent identifications, such as their initial posi-
tions or any set of material functions of fluid particles. Analytically, both coordinate
systems are capable of producing exact solutions of fluid flow, including discontin-
uous flow. They are regarded as equivalent to each other (for one-dimensional flow,
the equivalency was proved rigorously by Wagner [1]), except that the Lagrangian
one gives more information: it tells each fluid particle’s history. They are not
equivalent from numerical computation point of view.

Computationally, in using the Eulerian coordinates the computational cells are
fixed in space, while fluid particles move across cell interfaces in any direction. It
is this convective flux that causes excessive numerical diffusion in the numerical
solutions. Indeed, slip lines are smeared badly and shocks are also smeared, al-
beit somewhat better than slip lines. Moreover, the smearing of slip lines ever
increases with time and distance unless special treatments, such as artificial com-
pression or sub-cell resolution, are employed [2-4] which are, however, not always
reliable. The primary efforts of the CFD algorithm researchers since the sixties
have concentrated on developing better (more robust, accurate and efficient) ways
to deal with this convective flux. Although great progresses have been made and
“perhaps to the point of near perfection and little return could be gained” [5], nu-
merical diffusion still exists, causing inaccuracy and is even more difficult to handle
in multi-dimensional flow problems. Another disadvantage of the Eulerian coordi-
nates is that a grid generation, which can be time-consuming, is needed prior to
flow computation in order to satisfy boundary conditions on solid boundaries.

Computational cells in the Lagrangian coordinates, on the other hand, are liter-
ally fluid particles. Consequently, there is no convective flux across cell interfaces
and numerical diffusion is thus minimized. However, the very fact that compu-
tational cells exactly follow fluid particles can result in severe grid deformation,
causing inaccuracy and even break down of the computation. To prevent this from
happening, the most famous Lagrangian method in use at present time — the Ar-
bitrary Lagrangian - Eulerian Technique (ALE) [6-8] — uses continuous re-zoning
and re-mapping to the Eulerian grid. Unfortunately, this process requires interpo-
lations of geometry and flow variables which result in loss of accuracy, manifested
as numerical diffusion which ALE wants to avoid in the first place. Indeed, it was
demonstrated in [9] that re-zoning results in diffusive errors of the type encoun-
tered in Eulerian solutions and continuously re-zoned Lagrangian computation is
equivalent to an Eulerian computation. Another disadvantage of the Lagrangian
coordinates is that, except in the simple case of one-dimensional unsteady flow, the
governing equations for inviscid flow are not easily written in conservation form,
making it difficult to capture shocks correctly.
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After a series of study [10-17] on steady supersonic flow, it was found that the
advantages of Lagrangian coordinates arise from computational cells moving in the
direction of the fluid particles but not with their speeds. It was also found that
literally following fluid particles, as does Lagrangian, not only causes computa-
tional cells to deform with the fluid but also renders the governing equations for
inviscid supersonic flow not fully hyperbolic, as there is no complete set of eigen-
vectors, although all eigenvalues are still real. With this discovery, the generalized
Lagrangian method [18] was introduced for steady supersonic flow and was shown
to be superior to the Fulerian and the classical Lagrangian method, especially in
resolving slip lines and shocks.

In this paper we extend the above idea to unsteady flow by introducing a new
description of fluid motion in which the flow variables (velocities, pressure, density
etc) are considered to be functions of time and of some permanent identifications of
pseudo-particles which move with velocity hq, q being velocity of fluid particles
and h arbitrary. This turns out to be a unified description, ranging from Eulerian
when h = 0 to Lagrangian when A = 1, and the freedom in choosing h makes it
possible to avoid the disadvantages of excessive diffusion across slip lines in Eulerian
description and of severe grid deformation in Lagrangian description. For these
purposes, the choice of A to preserve grid angles in two-dimensional flow has been
shown in this paper to be most successful.

The extension from steady supersonic flow to unsteady flow is not trivial, but
it then allows us not only to compute unsteady flow but also to compute steady
subsonic, supersonic and transonic flow as the asymptotic state of unsteady flow
for large time.

This paper is organized as follow: in section 2 we introduce the unified coor-
dinates, whereas sections 3 and 4 discuss the mathematical properties of the 2-D
unsteady Euler equations of gasdynamics written in the unified coordinates. Section
5 outlines the numerical solution strategy and section 6 gives details of the Riemann
solution needed in the numerical procedures describes in section 7. Section 8 gives
results of the numerical computations on four test problems and compares them
with corresponding results based on Fulerian or Lagrangian coordinates, showing
the advantages of the unified coordinates. Finally, conclusions are given in section

9.

2. THE UNIFIED COORDINATES

Starting from Cartesian coordinates (z,y, z) and time ¢ in Eulerian description,
we make a transformation to coordinates (\, &, ,():

dt = d\ (2a)
dr = hud)\ + AdE + Ldn + Pd( (2b)
dy = hvd\ + Bd¢ + Mdn + Qd¢ (2c)
dz = hwd\ + Cdé + Ndn + Rd( (2d)
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where u, v, and w are the x—, y— and z— component of fluid velocity g, respectively.
Let

Dy, 0 0 0 0

— = —+ hu—+ hv— + hw— 3

Dt 6t+ 6x+ 6y+ 0z 3)
denote the material derivative following the pseudo-particle, whose velocity is
hq. Then, it is easy to show

Dp¢ Dpn Dp¢

=0 =0 =0 4
, , = ()

that is to say, the coordinates (£, 7, {) are material functions of the pseudo-particles,
hence are their permanent identifications. Accordingly, computational cells move
and deform with pseudo-particles, rather than with fluid particles as in La-
grangian coordinates.

Remarks.

(a) Unlike transformations used in grid generation, which are flow-independent,
the unique feature of transformation (1) is it depends on the fluid velocity.

(b) In (1), h is an arbitrary function of coordinates (\,&,7,¢). On the other
hand, (A, L, P, B, M,Q,C, N, R) are determined by the compatibility conditions.
For example, for dz to be a total differential,

OA O(hu
ox — T or (4a)
8L d(hu
oL _gn> (4D)
k] d(hu
gz%g (4¢)

When (4) are satisfied the other compatibility conditions, namely

8A _ 3L

an E (5&

8L _ 3P

5c — on (5b

8P _ 38A

E e (5e
are also satisfied, provided they are at A = 0 which can always be ensured in

numerical computation. Similar equations and discussions hold for (B, M, Q) and
(C, N, R).

(c) In the special case when h =0, (A, L,--- , R) are independent of X\. Then the
coordinates (&,1,() are independent of time A and are hence fixed in space. This
coordinate system is thus Eulerian. Transformation (1) is then flow-independent
and is just like any other transformation from Cartesian coordinates (x,¥, z) to
curvilinear coordinates (£,7, () used in grid generation. In particular, if A= M =
R=1land L=P=B=Q=C=N =0,(,n,() are identical with Cartesian
coordinates (x,y, ).

(d) In the special case when h = 1, on the other hand, the pseudo-particles co-
incide with fluid particles and (£, 7, () are the material functions of fluid particles,



UNIFIED COORDINATES FOR THE EULER EQUATIONS 5

hence are Lagrangian coordinates. The conventional choice of the Lagrangian co-
ordinates, i.e., (§,7,¢) = (x,¥, 2)|t—o, is just a special choice of material functions,
corresponding to choosing A= M =R=1land L=P=B=Q=C=N=0. It
does not offer any particular advantage in numerical computation, rather (£,1, ()
should better be left to be suitably chosen to initialize numerical computation. In
particular, the computational domain in (£, 7, () space can always be easily made
regular, e.g. rectangular, even if it is irregular in the physical space. This cannot
be done with the conventional choice of the Lagrangian coordinates.

(e) In the general case, I is arbitrary. It thus provides a new degree of freedom
which may be used to advantage: to avoid excessive numerical diffusion in Eulerian
coordinates, or to avoid severe grid deformation in Lagrangian coordinates. It will
be shown in the next section (see § 3.2) that for 2-D flow h may be chosen to render
the coordinates orthogonal, this would give an optimal grid.

3. EULER EQUATIONS IN THE UNIFIED COORDINATES

The Euler equations in Cartesian coordinates for inviscid flow of an ideal gas
obeying the y-law are

p ou pv pw
2
pu pus +p puv puw
% v |+ 62 puY + i o2+ p 4 32 pow —-0
pw v puw y pow 21 pwP4p (6)
L L L
pe pu (eer) pv (eer) pw (eer)
where p,p and e are the density, pressure and specific total energy of the gas, with
Loo, 2, 2 1 p
_ - _ 7
e = 50 4oy ud)  — ™)

Under transformation (1), the Euler equations (6) become

OB OF  0G OH

a)\Jra—nganJra—(—O (8)
where
[ pA T [ pl |
pAY plu+ pE N
pA’U pIU +p§yA
pAw plw + p&. A
phe ol (e n g) N
A —hu
B —hv
E c ,F b
L 0
M 0
N 0
P 0
Q 0
i 0
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- o - - oK -
pJu+ pnz A pKu + ple
pdv + pny A pPEv + pgy AN
pJw +pn, A pRKw+ p(,A

pJ (e + %) — s pK (e + %) — PG
0 0
G = 0 JH = 0 (9)
0 0
—hu 0
—hv 0
—hw 0
0 —hu
0 —hv
i 0 ] i —hw |
with
A L P
A=det| B M Q
C N R
D¢ Dn D¢
IfAE, JfAE, KfAE.
and

ONE M) [t wy,2)\ "
6(t, X, Y, Z)

A\, €1, Q)
‘We note that:

(a) the system of equations (8) is in conservation form;

(b) the last 9 equations of (8) arise from the compatibility requirements of trans-
formation (1). They are called geometric conservation laws, in contrast to the
physical conservation laws in the first 5 equations; and

(c) system (8) is larger than system (6) in Eulerian coordinates, as there are now
14 equations for 14 unknowns p,p,u,v,w, A, B,--- | R. However, the additional
computing costs for solving (8) are quite small, because the bulk of computing
time is spent on solving Riemann problems of the physical conservation laws (see
sections 6 - 8 below), which are the same for (8) as for (6). In fact, in some cases,
such as 2-D steady supersonic flow, it takes less time to solve (8) than to solve (6).

(see [15])

As remarked earlier the unified coordinate system is Lagrangian when A~ = 1. In
this case system (8) is the equations of motion in Lagrangian coordinates which are
now written in conservation form. In this regard, it should be pointed out that the
conventional Lagrangian equations are difficult to be written in conservation form
except, of course, in the special case of 1-D unsteady flow [19]. In Appendix A we
rewrite the 2-D conventional Lagrangian equations of motion for inviscid flow into
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conservation form and show that they are a special case of our system (8) (or its
2-D version (12)) when h = 1, as they should.

In the remaining of this paper we shall restrict our discussions to the two-
dimensional flow.

3.1. Hyperbolicity of The 2-D Unsteady Euler Equations in the
Unified Coordinates

Tt is well-known that the system of unsteady inviscid flow equations (6) in Carte-
sian coordinates is hyperbolic, meaning that all its eigenvalues are real and there
exists a compete set of linearly independent eigenvectors. Because the transfor-
mation from (%, x, y, z) to the unified coordinates (A, £,7, ¢) involves the dependent
variables (u, v, w), there is no guarantee that the resulting system (8) will necessarily
be hyperbolic. We now study the hyperbolicity of system (8) in the two-dimensional
case.

For two-dimensional unsteady flow, the Euler equations are

p pu pv
o | pu o | rPtp o puv
B e + E puv + a—y 2 p =0 (10)
Y Y
pe U (eJr p) pv <e+p)
where
I AR I p
e = 2(u + o )Jrv—lp
Under the transformation
dt = d\ (11a)
dx = hud\ + Ad¢ + Ldn (11b)
dy = hvd\ + Bd¢ + Mdn (11c)
we get
OE OF 0G
479 12
o e oy (12a)
where
pA p(1 —h)I p(1—h)J
pAu p(1 — h)lu+pM p(1 —h)Ju —pB
pLv p(1 —h)Iv —pL p(1—h)Jv+pA
E— ple F- p(1 —h)le+pl G- p(1 —h)Je+ pJ '
A —hu 0 (120)
B —hv 0
L 0 —hu
M 0 —hv
with

AN=AM —-BL, I=uM—-vL, J=Av—Bu (13)
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We note that the Euler equations (12) written in the unified coordinates are in
conservation form.
To study the hyperbolicity of (12), we re-write it as

ou ou ou

where

U = (pvpvuvvavaLv M)T
OE oF oG

A=s0 B au © 5o

S = (0,0,0,0,uhe, vhe, uhy, vhy) "

System (14) is said to be hyperbolic (also called strongly hyperbolic, or fully hy-
perbolic) in A if [20]

(i) all the eigenvalues o of
det(cA —aB —3C) =0

are real for every pair (a, 3) € R? : a® + 32 = 1; and
(ii) associated with the eigenvalues there exists a complete set of eight linearly
independent right eigenvectors in the state space.

System (14) is said to be weakly hyperbolic in X if (i) is satisfied but there does
not exist a complete set of linearly independent right eigenvectors.

The eigenvalues of (14) can be found using a method similar to [17], and the
results are as follows:

Case (a) h #£ 1.

In this case, we get

o1 = 0, (multiplicity of 4)
op (1—h)(a'u+ B'v) (multiplicity of 2) (15)

oL = oataya® + 37

where a is the speed of sound, and

o =(aM - BB)/A, B'=—(aL — BA)/A

The corresponding right eigenvectors are:

r, = (0,0,0,0,1,0,0,0)T
r, = (0,0,0,0,0,1,0,0)T (16)
r; = (0,0,0,0,0,0,1,0)T
ry = (0,0,0,0,0,0,0,1)7
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for o1, and

rs = (0,1,0,0,0,0,0,0)”
r¢ = (0,0,b0%,03, —abh, —ah, —Bbh, —Bh)T (17)

for 02, and

1 h _adh ho Bdh\"
r7s = (17 _27icvid7q:£7q:a_v:|:ﬁiv 6_> (18)
Q o+ o+ oL 0+
for o4+ where
N o B
b——3"/a — ] ] — = 4=
The eigenvectors rq, o, - -+ , rg are linearly independent, forming a complete basis

in the state space; system (14) is therefore hyperbolic for i # 1. This includes the
Eulerian case as special case when h = 0.

Case (b) h =1 (Lagrangian case)

In this case the eigenvalues are

o1 = 0 (multiplicity of 6)

o = fa/a” + 37 (19)

The eigenvectors associated with o1 are

/ / / / / rN\T
__ ( 7i o Jéj - —af —a'f —ﬁﬁ2> (20)

1 ? ? ? ? ? ?
a2’ por’ por’ ploL)?’ plos)?’ plos)?’ plos)
Associated with o3 = 0 (multiplicity of 6),

rank(cA — aB — 5C)| =3

g=01

hence there exist 5, and only 5, linearly independent eigenvectors:

r, = (0,0,0,0,1,0,0,0)T
r, = (0,0,0,0,0,1,0,0)T
r3 = (0,0,0,0,0,0,1,0)" (21)
(0,0,0,0,0,0,0,1)T
( )

0,1,0,0,0,0,0,0)"

ry =

rs —

We therefore arrive at the conclusion that the system of unsteady 2-D FEuler
equations of inviscid flow in Lagrangian coordinates is weakly hyperbolic, lacking
1 eigenvector although all eigenvalues are real. This is rather surprising in view
of the facts that the system of unsteady Fuler equations in Eulerian (Cartesian)
coordinates is long known to be hyperbolic and that it has hitherto been taken for
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granted that the system in Lagrangian coordinates is also hyperbolic. This turns
out to be true only in the simple case of one-dimensional unsteady flow [21], but
is not true for two-dimensional flow. This degeneracy from hyperbolic to weakly
hyperbolic may be traced back to the fact that transformation (11) involves not
only the independent variables but also the dependent variables, v and v. In this
regard we note that in the case h #£ 1, e.g. h = 1/2, the transformation (11) also
involves © and v but does not lead to degeneracy, as shown in case (a). So there is
something peculiar about i = 1, i.e. Lagrangian coordinates. That the 2-D Euler
equations in conventional Lagrangian coordinates are weakly hyperbolic is shown,
and related to the present formulation, in Appendix A.

The lesson to learn is that it is deficient to literally follow fluid particles to de-
scribe their motion, as Lagrangian coordinate system does, because the system of
inviscid unsteady flow equations is only weakly hyperbolic. Being only weakly hy-
perbolic, it does not possess the many desirable properties of a strongly hyperbolic
system. For instance: (a) the system cannot be written in characteristic form,
rendering the powerful method of characteristics inapplicable; (b) its solution may
grow unbounded; (c) the local Riemann problem may have no solution; and (d) the
Cauchy problem may be not well-posed. Despite of these possible defects, some
of our computations with 2~ = 1 encounter no difficulty and produce results al-
most identical to that for A~ = 0.99. But this is not guarenteed, and we shall not
present computational results for the case h = 1. We also note with interest that
some promising work on shock-capturing methods for weakly hyperbolic systems
has just appeared [22].

In summary, use of Lagrangian coordinates in CFD for two-dimensional unsteady
flow not only can cause severe cell deformation but also renders the Euler equations
weakly hyperbolic, with all its possible consequences on numerical computation. In
this regards, the unified coordinate system with h = 1 (no matter how close h is to
1), being strongly hyperbolic, is superior to the Lagrangian one.

Although the hyperbolicity of the system of Euler equations is discussed in this
paper only for the case of 2-D unsteady flow, we mention here the corresponding
results in other cases:

(a) For 1-D unsteady flow, the system of equations in the unified coordinates is
strongly hyperbolic for all values of h [ 21].

(b) For 3-D unsteady flow, it is strongly hyperbolic for all values of h except for
=1

h in the latter case it is only weakly hyperbolic.

(c) For 2-D steady supersonic flow the system of Euler equations resulting from
transformation

{ dx = hud\ + Ad¢ (22)

dy = hvd\ + Bd¢

is strongly hyperbolic for any h(), §) except when h = 1, or h = constant; in the
latter cases, it is only weakly hyperbolic.
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(d) For 3-D steady supersonic flow, the system of Fuler equations resulting from
transformation

dx = hud\ + Ad¢ + Ldn
dy = hvd\ + Bd§ + Mdn (23)
dz = hwd\+ Cd¢ + Ndn

is quite similar to (12), but it is only weakly hyperbolic for any %, although the sub-
system representing the physical conservation laws and the sub-system representing
the geometric conservation laws are each strongly hyperbolic [17].

3.2. Determination of &

As mentioned earlier, the chief advantage of the unified coordinates is the new
degree of freedom in choosing h. Many choices are possible and the simplest one
would be to choose a constant value for it. Numerical experiments for constant h will
be presented in section 8 to show its effects on grid deformation and on resolution
of flow discontinuities. In general, it is necessary to restrict 2 to within the range
0 < h < 1. For h > 1, the eigenvalue 03 in (15) has an opposite sign to that
for h < 1, indicating signals propagate in the wrong direction. Our computations
for h > 1 break down immediately. On the other hand, for A < 0, which means
the pseudo-particles are moving in the opposite direction to the fluid particles,
computation can be carried out initially but after some finite time it breaks down
also. No difficulty has been encountered in all our computations if h is restricted
to 0 < h < 1. Our computer code actually also works in many cases for h = 1
(recall the Euler equations are only weakly hyperbolic) producing results which are
indistinguishable from results using 7 = 0.99 (for which the Euler equations are
strongly hyperbolic).

A good choice for h is to preserve the grid angles in the solution process which
marches in A, i.e.

a{vg V”}o (24)

X (Ve V]
Since

V§ = (Mv _L)/A
Yy = (-B,A4)/A (25)

condition (24) becomes

(26)

0 { AL+ BM }
oN | WVAZ L B2/IZt M2|

By making use of the last four equations of (12), it is easy to show that (26) is
equivalent to

oh oh ou Ov ou ov
2 2 2 _ _ 72 - _ =
S J(95 +T I@r] = {S (B(9§ A6§> T (M(?n L@n)} h (27)



12 HUI, LI AND LI

where
S2 =124+ M? T?=A%y B? (28)

A consequence of determining h from (27) is that if the grid is orthogonal at
A = 0 it will remain so for subsequent A. Orthogonal grid is known to possess many
desirable properties over non-orthogonal grids, e.g. attaining higher accuracy than
non-orthogonal grids.

Computationally, Eq. (27) is to be solved at every time step after the flow
variables Q = (p, p, 1, v)T and the geometric variable K = (A, B, L, M)T are found.
Tt is thus a first order linear partial differential equations for h(&,7; ) with A
appearing as a parameter. To find solution A in the range

0<h<l1 (29)

we note that (27) is linear and homogeneous, therefore it possesses two properties:
(a) positive solution i > 0 always exists, and (b) if h is a solution to (27) so is h/C,
C being any constant. Making use of property (a), we let g = In(hg) to get

SQ(ACOSQ—BSine)g—g+T2(M0059—Lsin9)g—g
Ocos b Osinf O cos b Osinf
= $?(B —A —-T* (M —L
( o€ o€ > ( o on > (30)

where ¢ = vu2 4 v2 and 0 is the flow angle: u = gcosf,v = gsinf. Now, if g;
is any solution to (30) then h = €91 /¢C is a solution to (27) satisfying condition
(29), provided we choose C equal to the maximum of €9! /g over the whole flow field
being computed. The reason to work with In(hq) instead of Inh is that from our
experience with steady flow [15], hq is continuous across slip lines, hence working
with hg can minimize the numerical errors. This is confirmed in our unsteady
computation on the four test problems in section 8.

Numerically, Eq (30) is solved easily by the method of characteristics if their
slopes do not change sign as in example 1; otherwise it is solved by iteration.

We note in passing that an extended Lagrangian method was given in [5] for
2-D unsteady flow in which streamlines are used as coordinate lines, and excellent
resolution of slip lines was obtained for steady flow as asymptotic state for large
time. However, any streamline coordinate system will encounter difficulties if the
initial flow is at rest (see, e.g., example 4 in section 8) or if there is an interior stag-
nation point, because the transformation would be singular there and the unknown
functions become multi-valued. Indeed, the general transformation from Cartesian
coordinates (x,y) to streamline coordinates (£, n) is

dt = d\
de = Ld\ + hud€ + Adn (31)
dy = Md\ + hvd§ 4 Bdn

where h is arbitrary. Clearly 7 = const. corresponds to an instantaneous streamline.
The Jacobian of this transformation is equal to h(uB — vA), which is singular



UNIFIED COORDINATES FOR THE EULER EQUATIONS 13

at stagnation points, rendering the functions multi-valued. In our system, the
coordinate lines are pathlines of the pseudo-particles which avoid these difficulties,
and yield excellent resolution of slip lines as seen in section 8. Indeed, the Jacobian
of our transformation is A = AM — BL, which is the area of the computational
cell in the physical plane and is never zero in our computations.

4. BOUNDARY CONDITIONS AND RESOLUTION OF
DISCONTINUITIES

In this section we point out some advantages of the unified coordinate system
over those of the Eulerian in the following three aspects:

4.1. Boundary Conditions on Solid Boundaries
Consider a time-independent solid boundary (this includes steady flow as a special
case)

S B(x,y,z) =0 (32)
The boundary condition on it is
q-VB=0 on S (33)
hence
hq-VB =0 on S (34)

Equation (33) implies that fluid particles move on S, whereas (34) implies that
pseudo-particles also move on S. Therefore, S is a material function of the pseudo-
particles. Consequently, B(x,¥, z) can be taken to correspond to one of the coordi-
nates, & say. In other words, a coordinate surface in the unified coordinate system
can be taken to represent a time-independent solid surface and there is no need for
a grid generation prior to flow computation, as is needed if Eulerian coordinates
were used.

4.2. Slip line Resolution

In steady flow, pathlines are identical with streamlines. Hence a slip line coincides
with the streamline of a fluid particle and, therefore, also with the streamline
of a pseudo-particle. Consequently, it can be taken to correspond to one of the
coordinates, £* say, thus avoiding the Godunov averaging across it. Hence, in the
unified coordinate system a slip line can be sharply resolved. This is in direct
contrast to the Eulerian coordinates where a slip line does not coincide with a
coordinate line and, as a result, the Godunov averaging across a slip line in a
computational cell will forever smear it.

For unsteady flow, pathlines are in general distinct from streamlines. While a slip
line still coincides with the pathline of a fluid particle, it does not always coincide
with a streamline. Hence, a slip line does not always coincide with a coordinate line
in the unified coordinate system. In this regard, numerical experiments (section 8)
clearly indicate the trend that slip line resolution increases with increasing A from
h = 0 (Eulerian) to h = 1 (Lagrangian) and the unified coordinates using grid-angle
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preserving h, Fq (27), yield better slip line resolution than the Eulerian coordinates.
Furthermore, if a steady flow is computed as an asymptotic state of unsteady flow
for large time, sharp resolution of slip lines is achieved when h is determined by
(27), which at the same time avoids severe grid deformation.

4.3. Shock Resolution

In using the unified coordinate system for flow computation, once the grid is set
initially it is subsequently generated by the motion of the pseudo-particles. In this
regard, it is interesting to note that the pseudo-particles, which move parallel to
the fluid particles, tend to crowd together when compressed, resulting in automatic
refinement of the grid in the compression region. Consequently, shock resolution is
improved in the unified coordinates over the Eulerian. Moreover, the improvements
increase with increasing shock strength.

5. SOLUTION STRATEGIES

From the above discussion, we see that the system of Euler equations (12) is po-
tentially superior to its counterpart (10) using Eulerian coordinates in slip line reso-
lution, especially for steady flow. Furthermore, with A determined by the grid-angle
preserving condition (27), it can avoid the severe grid deformation encountered in
the Lagrangian coordinates.

As the system of Euler equations (12) is in conservation form, any well-established
shock-capturing method can be used to solve it. We shall use the Godunov method
with the MUSCL update to higher resolution to solve system (12). The computation
will be done entirely in the A — £ — n space. A physical cell in the * — y plane
marching along the pseudo-particle’s pathline corresponds to a rectangular cell in
the £ — 1 plane marching in the A direction in the computational space A — & — 7).
The superscript k refers to the marching time step number and the subscripts ¢
and j refer to the cell index number on a time plane A\ = const. The time step
AN = N1 _ )\* s uniform for all ¢ and j, but is always chosen to satisfy the
CFL stability condition. The grid divides the computational domain into cuboid
control volumes, or cells, which in £ and 7 direction are centered at ()\k, &, 7]]-) and
have widths A = &41/2 — &§-1/2 and An; = 1;41/2 — Nj_1/2 (for all k). Unless
otherwise stated we shall use uniform cell width A¢; for all ¢ and An; for all j.

In the physical space (, x,y) a cuboid cell marching in (X, &, 1) space corresponds
to a pseudo-particle marching along its path tube with step Af(At = AX). The
pseudo-particle is bounded by four path surfaces { = §;+; /2 and 7 = 1,1, /2 around
it. Initially, any curvilinear coordinate grid on the r — y plane may be used as the
¢ —n coordinate grid and the initial geometric variables K = (A, B, L, M)? can be
determined from (11) as part of the initial conditions. A stationary solid wall is
always a path surface of the fluids and hence also of the pseudo-fluids; it is therefore
a coordinate surface.

We shall apply the Godunov scheme [23] with MUSCL update [24] to solve (12).
Applying the divergence theorem to (12) over the cuboid cell (4, j, k) results in

EFl _ mE AN (Fk+1/2 _pkt1/2 ) AN ( B2 /2 )
4,J i+1/2,5 i—1/2,5 Aﬁj 4,j+1/2 i,5-1/2 )"

O Ag
i:1727"'7m; j:1727"'7n7 (35)
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where the notation for the cell average of any quantity f is
b L / e / T R0 € ) dn (36)
SAGAY; Je oy Snsis w ’

and the notation for time \ average of f is:

)\k+1

1

k+1/2

fi+1//27j = m/)\k f()\7§i+1/2777j)d)‘7 (37)
k41

[ ——— ' FON €1 y2)dN (38)

4L,3+1/2 T ANK N y i Mi4+1/2 .

According to Godunov’s idea, the cell-interface fluxes Ffj:ll // ; ; and Gi}j{% for
the Cell (i,7) should be obtained from the self-similar solution of a local two-
dimensional Riemann problem formed by the averaged constant state Q; ; = (p, p, u,
v)[; of the Cell (i, ) and those of its adjacent cells. Unfortunately, such a solution
to (12) is unavailable at present time. Indeed, even a 2-D Riemann solution to
the simpler system (10), which is a special case of (12) when h = 0, is not yet
available. On the other hand, it is known that a monotone difference scheme to
a general conservation form converges to the physically relevant entropy-satisfying
solution. In particular, Crandall and Majda [25] establish the rigorous convergence
for dimensional splitting algorithms when each step is approximated by a monotone
difference scheme (such as the Godunov scheme) for a single conservation law of
multi-dimension.

In view of the above, we shall numerically solve (12) using a Godunov-type scheme
based on the following strategies: a time step-wise Eulerian approximation to de-
couple the geometric conservation laws from the physical conservation laws, and a
dimensional splitting approximation to reduce the two-dimensional flow problem to
two one-dimensional flow problems. These are explained as follows.

5.1. The Time Step-Wise Eulerian (TSE) Approximation

The essence of TSE is that while solving the physical conservation laws (the first
4 equations of (12)) for the flow variables Q = (p,p,u,v)T in the time step of A from
N to A1) the geometric variables K = (A, B, L, M) and h are kept unchanged
with A but are in general functions of £ and 7, hence the effects of cell shapes (grid)
on the flow are accounted for in a time-frozen manner. More precisely, in solving
the physical conservation laws in QF(\) : A\ < X < AF1 we use K = K(M\,&,n)
and h = h(\* €, n). After obtaining the solution Q(\, &,1), A € QF()\), we update
the geometric conservation laws (the last 4 equations of (12)) to get K(\**1 & n)
(this is a rather trivial step) and then solve (27) to get h(A\**1 £ 1) as explained
in section 4. In this way the effects of the flow on the cell shapes are taken into
account. This completes the advancing of solution for one time step from A = \*
to A = A*T! and the process can be repeated to advance the solution for the next
time step.

Physically, the TSE idea is equivalent to temporarily freezing the shape of the
fluid particles over QF()\) while the flow field evolves. Mathematically, the prob-
lem of solving the physical conservation laws over QF (A) keeping K and % frozen
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is equivalent to one of solving the Euler equations in fixed curvilinear coordinates
(&, 1) with coefficients in the governing equations varying in & and 7. The Riemann
problem in the curvilinear coordinates is more difficult than that in Cartesian co-
ordinates but is solvable as will be explained in section 6.

At this point it is necessary and possible to comment on the equivalence of the
weak solution of the extended system (12) to that of the Eulerian system (10). As
shown in section 3.1 the extended system has an additional eigenvalue o; = 0 (mul-
tiplicity of 4) corresponding to the geometric conservation laws. Since this eigenfield
is linearly degenerated, it might be anticipated that the solution of the extended
system possesses a new slip line, in addition to the slip line corresponding to oo of
Eq. (15). We note that this is not the case for one-dimensional flow [21] but, un-
fortunately, no theoretical result is available at present for the two-dimensional case
under consideration. On the other hand, in using the TSW Eulerian approximation
to solve the extended system, this additional eigenfield does not come in to play
(because the geometric variables K and h are treated as given) and the extended
system is truncated and reduced to the Fulerian system in curvilinears coordinates.
Therefore, the weak solution of the extended system as obtained by the time step-
wise Eulerian method is equivalent to the weak solution of the Eulerian system.
Any differences between the two solutions must arise from the different grids used,
and it is the purpose of this paper to show that such differences are indeed very
significant; see section 8.

5.2. Dimensional Splitting Approximation

The dimensional splitting technique for finding approximate solution to the Rie-
mann problem in multi-dimensional flow is now well established and used widely.
This technique renders the solution of a multidimensional problem to a sequen-
tial solution of several one-dimensional problems. The Godunov splitting and the
Strang splitting [26] are frequently used in practical applications. Theoretically, if
the time accuracy of the one-dimensional solution is of the first order, both of these
two splitting techniques are also first order time accurate. But our numerical test
on the two-dimensional Riemann problem (the first test example) shows that the
Strang splitting gives more accurate results. Thus we shall use the Strang splitting
in this paper. Let [,i 4 represent the exact solution operator for the 1-D equation
in A — ¢ plane and L], similarly defined, then

QF ! = 55% ﬁgsz% QF (39)

where A\ = M1 — )P,
The solution operator [,i 5 for the Riemann problem with variable coeflicients in
the governing equations in A — & plane will now be given in details.

6. THE RIEMANN SOLUTION IN THE X — £ PLANE

Based on the solution strategies explained in the last section, the key step is the
solution to the 1-D Riemann problem over the time step QF()\) : \F < X < AFH1
resulting from dimensional splitting and the time step-wise Eulerian approximation.



UNIFIED COORDINATES FOR THE EULER EQUATIONS 17

In this section, we explain how to derive the 1-1) Riemann solution in the A — ¢
plane, in particular the flow variable Q at the interface & = 0 for A € QF()\). The
1-D Riemann problem in the A — 7 plane can be obtained similarly.

From (12), at time step A\* (to be taken as 0 for simplicity) the 1-D physical
conservation law equations in the A — £ plane resulting from dimensional splitting

are
OE, OF,
— +——==0, AeQN):0<AZ<AA 40
o T — 0 AERN:0<AS (40a)
where
pA p(1 —h)I
| pLu | p(1 = h)Iu+pM
Ep = pLv |’ Fy = p(1—h)Iv—pL (406)
pAe p(1 —h)le+pl
with
1,5 5 1 p
A=AM —BL, I=uM—vL, e==(u"+v%)+——=. (41)
2 y—1p

In (40), the physical variables Q = (p, p,u,v)T are regarded as (unknown) functions
of A and ¢ while the geometric variables K = (A, B, L, M) and h, which appear
in the equations’ coeflicients, are independent of A, i.e.

K= K(Ov 5)7 h = h(ov 5) (42)

7 in (40) is treated as a parameter. In applying the Godunov scheme to advance
the solution from A = 0 to A = A, the initial data for the adjacent cells (7, j) and
(141, 7) are the following Riemann (constant) data (for simplicity we take the cell
interface between these two cells to be located at £ = 0)

Q

= {Qf( ) £<0 (43)

TlQE=QY), £>0

At the same time, based on the Time Step-Wise Eulerian approximation, the coef-
ficients in the equations (40) are

awn| { (K, h)3=0(= (K, h)5%),  €<0 ”
(Kv h)i\:O(: (Kv h)i\flo,])v £>0

We note that these coefficients are constant separately for £ < 0 and £ > 0, but are
in general not equal to each other.

To put the Riemann problem in the A—¢ plane more explicitly in one-dimensional
form, we note that the normal direction of the plane £ = constant is

V¢

n- o - (M,—L)/S (45)
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and project the flow velocity q into the normal direction n and the tangential
direction t to get

w=qn=(uM-—vL)/S (46)
T=qt=(wl+vM)/S
We also replace (L, M) by S and % as follows
S = VI + M2 (47)
tany = M/L

We shall now transform (40) for ¢ < 0 and for £ > 0, separately. For & <
0,(K,h) = (K, h); are const. Hence A = A;, S = Sy, 9 = 1)y are also constant, Eq
(40) become

OE, OF,
—0, AeQ(\), £<0 48
e 2 0. € (450)
where
p p(1 = hy)w
o pw r_ p(L = he)w? +p
S e B BT (48)
pe p(1 — hp)we + wp
Similarly, for £ > 0 Eq (40) become
OE. OF,
r 0 AeQ()), £>0 49
e & 0. € (490)
with
P P(1 - hr)w
_ 2
pT p(1 — hy)wt
pe p(1 — h,)we +wp
These equations (48) and (49) are in the same form as the system
p pu
a ou a pu? 4 p
ot P t o puv —0 (50)
pe pue + up

obtained from the Euler equations in Cartesian coordinates after dimensional split-
ting if we equate w with © and 7 with v; hence they can be solved by a similar
method. We note that in each of the systems (48), (49) or (50) the coefficients are
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constant over £2(\) and the variable v (or 7) can be decoupled. We also note that
the Riemann problem consisting of (48), (49) and initial condition (43) has a new
feature — and hence new difficulty — in that the coefficients, though constant, in
general are different for & < 0 as for £ > 0.

6.1. Special Case: (K, h), = (K, h)n»
We consider first the special case when the constants are equal, i.e.

(K. h)p=0 = (K h)2~0 = (K, )0 (51)

In this case, (48) and (49) are identical and become

OF/  OF'

0, XeQ 52
on T e — 0 Aeaw (52a)
where
p p(1 = h)w
’r pw r p(l—h)w2+p
A I FE A (52b)
pe p(1 — h)we + wp

and A, S and h are constant.
Eq (52) become, after decoupling the tangential velocity component 7, the con-
ventional Riemann problem for a 1-D unsteady flow:

aEII aFII
o T e 0, A e Q) (53a)
(p » W) >\:0: (p7 D, w)fv 5 <0 (53b)
77 (pvpvw)rv §>0
where
p p(1—h)w
E'=Alpw |, F'=S| pl-hw?+p (53¢)
peL p(1 —h)we| +wp
with
1 1
€| = 5(4)2 —+ m% (53d)

The tangential velocity component 7 can be found , after solving (53), from

O(pAT) N O(S(1 — h)pwr) _

54
O\ o€ (54)
which can be simplified to, after using the first equation of (53a),
0 1—h)S 0
T U=mS or (55a)

E2) N

_ T, £<0 (55b)
Ty £2>0
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Now since A, S and h are constant in (53), the Riemann problem (53) can be
solved in exactly the same way as solving the 1-D unsteady flow equations of
gasdynamics. As usual, the physical entropy condition that the entropy of a fluid
particle shall not decrease on crossing a shock is imposed to select the physically
correct solution. The solution consists of 4 uniform flow regions separated by 3
nonlinear singular waves: a shock, a slip line and an expansion wave, with the slip
line situated in between the shock and the expansion wave. (Fig. 1)

The solution to the Riemann problem for 0 < h < 1 is now given in details:

(a) The Eigenfields:
The eigenvalues of Eq. (52) are (0 < h < 1)

1—h)S
0y = %w (multiplicity of 2)
S
oL = Z[(l —h)w £ a] (56)

Their corresponding right eigenvectors are

ri; = (0,1,0,0)"

ri» = (0,0,0,1)7 (57)
for 02, and
T
1 1
ri — (?717:&%7()) (58)

for o1. It is easy to see that the eigenfield o5 is linearly degenerated, whereas the
eigenfields o1 are genuinely non-linear.
(b) Smooth Solutions:

The smooth solution for the eigenfields o1 are determined from

dp 1

dp  a?

d; 1

*_ 4 (59)
dp ap

dr 0

dp

The solution for p,w, and 7 relates the flow state Q = (p, p,w, 7)7 in the expansion
fan to the initial state Qo = (po,Po,wo,To)? upstream of the fan. This solution
can be easily found and is most conveniently given in terms of the pressure ratio
a = p/po as follows

1
P = pox”
y—1
w:woi%?f<a?—l) (60)
T ="T9

where ag = 1/vPo/ po-
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Note that 7 does not change across an expansion fan and that equations (60)
are identical to those of the purely 1-D unsteady flow; in particular, they are
independent of K and h.

Let (), &) be a general point inside the expansion fan. The slope of the characteristic
is given by

&S s (61)

The solution for flow inside the fan is

2(1-h -1 A 7T
P= Po {7£2h+)1 + ('y*;h+1)a,0 ((1 — h)wo — ?%)}
1

p= poa~ - (62)
w = woi%i—@zw—l)
T = To

If we put » = 0 in (62), we recover the solution as obtained in the Eulerian coordi-
nates, as it should.

For discontinuous solutions, we start from the Rankine-Hugoniot conditions for

(52),

cA[p] (1- )
cA[pT S (1 h)|pwT]
cAlpe] = S|(1 — h)pwe + wp]
where [-] denotes the jump across the discontinuity whose speed is denoted by

T
(c) Shock Waves:
We denote the pre-shock (upstream) flow state by Qo = (po, po, wo, To)? and the

post-shock (downstream) flow state by Q = (p,p,w, 7)7, respectively. Then the
shock jump relations can be expressed in terms of o = p/pg as follows:

oy +1)+v—1
P= POt
W = wy+ ——ole D) (64)

VEr(e(y+1)+y—1)
T =19

Again, we see that 7 does not jump across a shock and that equations (64) are iden-
tical to those of the purely 1-D unsteady flow; in particular they are independent
of K and h.

(d) Slip Lines:

In this case, we get

W = Wp
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but the density jump and tangential velocity jump are arbitrary. Once again, we
note that (65) are identical to the purely 1-D flow; and in particular they are
independent of K and h.

In summary, we note that for the flow variables Q = (p, p,w,7)? their relations
across a shock (64), across a slip line (65) and across an expansion wave (60) hold
separately in their regions & < 0 or £ > 0 and are all independent of the values of
the geometric variables K = (A, B, L, M)T and h, provided the expansion wave lies
entirely in the region & < 0 or entirely in £ > 0. On the other hand, shock speed,
slip line speed and the structure of the flow inside the expansion fan (62), e.g. fan
width and location, are dependent on the values of K and h. Such dependence
would be needed to construct the complete Riemann solution for A € () and for
all ¢ values. But, in using the Godunov scheme to advance the solution from A = 0
to A = AX, we need only the flow variables Q at the cell interface £ = 0 (to

1
compute the flux Ffj:f j) which are entirely independent of the values of K and h
2.

and are continuous across the interface, provided the expansion wave lies entirely
inf <0or & >0.

For instance, to find Q in Q()), we consider the generic case shown in Fig.

=0

1. We start by assuming a value p* for pressure at region 3, i.e. p3 = p*, then on

the one hand ps = p* and from Q; and p2 we can determine Q2 in region 2 (we
use (64) if p, < p*, and (60) if p; > p*). On the other hand, from Q, and ps we
can determine Q3 in region 3 (we use (64) if p, < p*, and (60) if p, > p*) we then
compare wy with ws: if wy = w3, the initial guess p* is the correct value for pressure
in region 3 and Q at the interface is completely determined. If wg # w3, we go back
to adjust p* until wy = w3 is reached.

This process is formally done using the Newton method of iteration to find the
roots of the nonlinear equation.

6.2. General Case: (K, ), # (K, h)»
This case is sketched in Fig. 2. It is the Riemann problem that would arise in
a purely Eulerian computation if the space coordinate are not Cartesian but are
curvilinear.
In this case, we first solve the problem with the data

Qo Ko, hy)  £<0

Q. Kph) €30, (66)

(Qv K, h)AZO - {
The problem is solved as explained in section 6.1 above. In particular, the flow
variables Q at the interface & = 0 are independent of K, and hy, but are completely
determined by Q, and Q,. Now, when we change (K, h;) for £ > 0 to (K, h,.),
the flow variables Q at & = 0 are not changed since they are independent of the
geometric variables K and % (as noted in section 6.1), provided the expansion wave
lies entirely in the region ¢ < 0 or in the region & > 0. In the rare case when
the expansion fan covers the interface £ = 0, we see from (62) the pressure there

depends on h and we make an additional approximation that h = §(hg + h,) is

used for calculating p in (62). In this way we obtain the Riemann solution for Q
at the interface.
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To summarize, in computing the interface flow variables Q at & = 0 for the
Godunov flux the geometric variables K and h on the two sides, £ < 0 and & > 0,
are never used and only a conventional 1-D unsteady flow Riemann problem is

solved, whose solution is completely determined by the initial data of the flow field,

ie. Qg and Q, (at A =0)

7. NUMERICAL PROCEDURE

The numerical procedure of the Godunov/MUSCL scheme can now be summa-

rized as follows:

Step 1:

Step 2:

1°:

2°:

Initialization. Assume the initial conditions of a flow problem are given at
t = 0(X\ = 0) in the © — y plane. Then an appropriate { — 7 coordinate
grid is laid on the # — y plane (for instance, we take { and 7 equal to
the arc length of their corresponding coordinate line on = — y plane), with
€ = &0,&1,82+,&my N = 10,715 72,7 0+ M, and the curve § = & (or
1 = 1)) coinciding with the solid surface if there is one. Hence Kg ; as
well as the flow variable ng = (p°, p°, w0, vo)g:j
the given flow over the computational cell (i, j). They are used together

are obtained by averaging

with h?yj = 0 as initial conditions. Subsequently, E?yj,i =1,2,---,m, j=
1,2,--- ,n, are available. For example, if we choose &, 1 to be the respective

arc lengths of - and y-coordinate lines then, form (7), K9, = (1,0,0,1)"
and EY ; follow from its expressions in (12b).

The operation [ﬁA)\ for marching from A* to A¥*1 = Mt AN, £ =0,1,2,---.
We first take

(Ki (V) hi (V) = (K5 (AF), by (A7) (67)

to be constant over the inverval ¥ < A\ < A¥1_ Then for every pair of
adjacent cells (7, 7) and (7 + 1, j),

Do a MUSCL type data reconstruction in a component by component man-
ner. For example, in the £ direction, let f be any of the above physical
variables p,p,u, v, then, instead of assuming a uniform state in the cells
(7,7) and (¢ + 1,7), we assume linearly distributed states and use linear
extrapolation to determine cell interface flow variables: f, = fz‘+1,j —
-5(fi+27j - fi+1,j)¢(r+) with rt = (fi+17j - fi,j)/(fi+2,j - fi+17j) and
fe = fz‘,j + '5(fi,j - fi717j)¢(747) with 77 = (fiJrl,j - fz;j)/(fzyj - fiflyj)v
where ¢(r) = max(0, min(1,r)) is the minmod flux limiter and subscripts
r and £ of f correspond to right and left states, respectively.

Define the normal direction of the cell interface ;1 ; between the two
adjacent cells (7,7) and (i + 1, ) as

n— (V9iy + (Vi1 (68)

I(VE€)ig + (VE)it1l

i.e., the average of (V§); ; and (V§);41,;- Project the velocity vector q =
(u,v) into the normal and the tangential components (w and 7) using Fq.

(46).
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3°:

4°;

5°:

6°:

7
8°:
9°:

10°:

HUI, LI AND LI

Solve the Riemann problem of (53) as explained in sections 6.1 and 6.2
to get the interfacial flow variables (p,p,w,7)” and hence (p, p,u,v)7 at
£= §i+% ;- These are constants and will be denoted by (- )i+§,j'

Update Kk to Kchrl as follows
k+1 k k _
(Ak+1 > h ( A%j > + A_Ahf Dihd T Mim b
B B3, A& M\ Vipty T Viog
LE+t Lk,
(ase) = (i) g
4,9 ]

Calculate the first four components of the cell interface flux. For instance,

+1
the 2nd component of the interface flux F +1 F is evaluated as
27
pi+%7j(1_hf )( z+ ]Mk o z+ ]L )+pz+ ]Mi_ﬂ;_rl
(70)

Update the conserved variables E, in the physical conservation laws (40)
using

ANF 1 L
Ek+1 k k+3 Fk+12 ) (71)

i P A&( i+t Ti-Llg

Decode EkJrl to get QFT

: Akt gkt kel kel
usmgAfAm M7 = B Ly

i
Apply Strang splitting, Eq. (39), to advance Q to Qk+1.

Update hﬁj to hfjl by solving Eq. (27), using the updated values ijl and
Kijl in its coefficients. (Note: this step 9° is, of course, to be by-passed if

h = const is assumed in the computation)

Calculate the grid in the z — y plane at A*+1:

{ xfjl o xkﬂ (hf] f] + thrl k+1) AN (72)
g =y E (R 4 TR

By a grid we mean the lines joining the cell centers, not the cell interface
lines.

We remark that the grid in the physical plane is not used in the subsequent
computation (only the values of K are used) as the whole computation is
carried out in the transformed plane (the £ — 1 plane). So, this step 10° is
optional. However, the grid information is useful in computing steady flow
as asymptotic state of unsteady flow for large A. In this case to check if
a steady state is reached, which means the flow at every fixed location in
the * — y plane does not change with increasing time, we should compare
the flow variables Q at the same fixed point (z,y) in the physical plane
and not at the same points (£,7) in the transformed plane; the latter are
simply the pseudo-particles whose positions in the z — y plane in general
move with A and never reach an asymptotic state.
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After this, we repeat step 2 to advance the solution further to A**2, and so on.

8. TEST EXAMPLES

In this section, the unified coordinates approach is tested numerically on four
examples. Two of them are unsteady flows and other two are steady flows which
are computed as asymptotic states of unsteady flow for large time. v = 1.4 is
used in all the cases. The numerical results are then compared with the exact
solutions, experimental results or other Euler solver’s solutions wherever available.
In addition, example 3 is chosen for the grid convergence test. In all the cases, the
effects of h on the computational robustness and accuracy are discussed.

The first example is a two-dimensional steady Riemann problem generated by
two uniform parallel flows as

0.25,0.5,7,0) y >0
Me _ ( ) sy by
(p, p: M. 0) {(1,1,2.4,0) y <0

where M is the Mach number and € the flow angle, # = tan '(v/u). The flow
contains a shock wave, a slip line and an expansion wave (Fig. 3). The slip line is
sensitive to the dissipative property of the numerical methods. Since the analytical
solution for the problem is available, it is an excellent benchmark problem for the
verification of numerical methods. In the computation, the steady flow is achieved
with time marching until the flow structure and the variables do not change with
time. A grid of 60 x 100 with A¢ = An = 0.01 is employed in the computation.
Initially, a grid with Az = Ay = 0.01 in the physical plane is laid over a domain
of {0 <x<0.6,-0.5 <y <0.5}. The initial data are given at each cell according
to its position in ¥ > 0 or y < 0, representing cell-average values. The physical
domain will change with time according to the pseudo-particle’s velocity hq if h is
not zero. If we follow the computational cells (pseudo-particles), they will move out
the initial physical domain, and it would be difficult to have a steady state of flow in
the original physical domain. To avoid this, a special technique called “motionless
viewing window” is applied as in the classical Lagrangian method. Accordingly, the
column of cells which have moved out of the original physical domain to the right
are deleted, while a new column of cells are added at the input flow boundary on
the left.

For this problem, we first compute the flow by the well-known solver CLAW
developed by R. J. LeVeque based on Fulerian coordinates. Fig. 4 shows its density
distribution compared with the exact solution. It is seen that the slip line is badly
smeared and the computed density has a dip near the slip line.

In Figs 5a to 5d we show computed density using our unified code for h =0,h =
0.25,h = 0.5 and h = 0.999, again compared with the exact solution. We see
that the result for # = 0 (Eulerian coordinates) is similar to those of LeVeque
(Fig. 4), except the dip is now somewhat less severe. This could be attributed
to the fact that we use the exact Riemann solution, whereas LeVeque uses Roe’s
approximate Riemann solution. However, the very poor resolution of the slip line
is a common feature of any method based on Eulerian coordinates as a result
of Godunov averaging across slip lines which, in general, do not coincide with
(Eulerian) coordinate lines. A comparison of Figs 5a to 5d also shows that the slip
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line resolution improves with increasing h from A = 0 to 2 = 0.999, as expected. It
is worth noting that even when h is small, the slip line resolution is much better
than that using Eulerian coordinates. This is because the flow is steady and the slip
lines coincide with the streamlines which, in turn, coincide with the gird lines, thus
avoiding the Godunov averaging across slip lines, as pointed out earlier in section
4.2. The computing times for these four cases are the same and are approximately
equal to that for the CLAW code.

Fig. 6 shows the computed density using the grid-angle preserving i as deter-
mined by Eq (27), which is solved at each time step using the method of charac-
teristics. While its slip line resolution is seen less sharp compared with that for
h = 0.999, its predicted density in the uniform flow region between the shock and
the slip line is better. The computing time is about 1 —2% more than that required
in a Eulerian code or in the h = const cases. The bulk of computing time is spent
on solving the Riemann problems, and the excessive computing time is spent on
solving Eq (27) for h.

All the computations started with the Eulerian grid (Fig 7a). The flow-generated
grids, i.e. the lines joining the cell centers, at steady state are shown in Figs 7b
to 7d. We note that: (a) the grid using grid angle preserving h is everywhere
orthogonal, (b) a seemingly small change from the initial grid Fig 7a to the final
grid Fig 7d has resulted in great improvement in computational accuracy (compare
Fig. 6 with Fig. 5a), and (c) the grids for h = 0.5 and h = 0.999 are severely
deformed near the slip line, and such grid deformation causes inaccuracy locally, as
seen in Fig 5d.

Finally, Fig. 8 shows the computed density using a steady flow code of Hui and
Chu [15]. Tt is clearly the best result and requires much less computing time. Its
sharp resolution of slip line is a consequence of using pseudo-particles coordinates,
but its sharp resolution of shock wave is the result of applying an adaptive Godunov
scheme. However, the steady code [15] is applicable only to purely supersonic and
steady flow.

The second example is the supersonic flow passing through a channel with a
ramp segment. A ramp of 15° is located at the bottom wall between x = 0.5 and
x = 1. The top wall and the other part of the bottom wall connecting the ramp are
flat and parallel to each other (Fig. 9). When a flow of M = 1.8 passes through
the channel, an oblique shock, a Mach stem, a slip line and reflected shocks are
generated. The computational grid is 180 x 50 with A& = An = 0.02 Initially,
let Axr = A€, and Ay is calculated according to the distant between the top and
bottom wall divided by the grid number in the 1 direction. The initial grid system
is shown in Fig. 9. A physical domain {0 < x < 3.6,0 <y < 1.} is given initially
and the motionless viewing window technique is applied. The initial flow data
(p,p, M,0) = (1,1,1.8,0) are given at each cell. This flow is also imposed as the
boundary condition at the inflow boundary, while at the outflow boundary a zero-
gradient condition is imposed. The flow asymptotes its steady state as the time
marches long enough. We test two situations. First, we take h = 0.999. Figs 10a
to 10c give the pressure and Mach number contours and the flow-generated grid
at steady state. Although the grid is relatively coarse, all the flow features are
well captured: the Mach stem is about 20% of the inlet height; the oblique shock
wave, the corner expansion waves, and the reflected shock waves between two flat
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walls are all well resolved. Particularly, the slip line stem from the triple point is
captured clearly. However, the pressure near the slip line is not smooth enough and
this is due to the severe grid deformation there as seen in Fig. 10c. A notch at the
upper right corner of Fig. 10c¢ is due to the slow-down of the flow behind the Mach
stem. Secondly, a grid-angle preserving method is applied to compute the channel
flow (Fig. 11). The h-equation (27) is solved in an iterative way. It is noticed that
the flow-generated grid is orthogonal everywhere. This is because the grid at the
inlet is orthogonal, and the grid angles are preserved while they move down stream
with the pseudo-particles. The flow structure is captured as good as in the case
h =0.999. What is more, the pressure is smooth at the slip line, as it should.

The third example is the Mach reflection of a shock wave from a wedge. It is an
unsteady flow: a plane shock of M = 1.3 moves form left to right across a wedge
of 25°, generating Mach reflection. The initial grid of 200 x 100 with A¢ = 0.01
and An = 0.0075 is laid similarly as in the second example. The initial flow state
is given as (p, p,u,v) = (1/1.4,1,0,0) everywhere apart from that at the input
boundary, where the flow state is (p, p, u,v) = (1.2893, 1.5157,0.44231, 0). We take
h to be 0,0.999, and grid angle preserving. The Mach number contours at t = 1.25
are shown in Figs 12a to 12c. Whilst the flow features are well captured in all the
three cases, the slip line stemming from the triple point is a little more smeared
with i = 0 than the other two cases. With i = 0.999, the normal shock is sharper,
because the grid automatically becomes denser near the shock.

To demonstrate the convergence of the computed results as the grid is refined,
we use a finer grid (400 x 200) and the grid-angle preserving i and compare our
results with experiment (Fig 13a) [27]. The same code is run to the t = 1.25. The
shock wave and the slip line become sharper (Fig. 13b) with the refinement of the
grid. In addition, they all agree with experimental observation.

The last example is an interesting implosion/explosion problem. It is an unsteady
flow in a two-dimensional container. Inside the container, the gases at rest are
separated into two regions with a square diaphragm (Fig. 14). The centers of
these two squares coincide. At t = 0, the diaphragm is ruptured, the inner and the
outer gases begin to interact with each other. Since the flow is confined with solid
walls, it will be reflected from the walls continuously and become more and more
complex. In our test, we choose the initial flow state as follows: for the inner region
(p, p,u,v) = (0.14,0.125,0,0), and for the outside region, (p, p,u,v) = (1.,1.,0.,0.).
Initially, a uniform grid of 60 x 60 with A§ = An = Ax = Ay = 0.01 is given
(Fig 14). We test this example with h = 0,h = 0.7,h = 0.9, and the grid-angle
preserving %, Fq (27). Of course, the computer code can run non-stop when h = 0.
But when A = 0.9, the code can run only until £ = 0.75; soon afterwards it breaks
down. We also note that in the Lagrangian case [28] which corresponds to h = 1,
it breaks down at an earlier time, £ = 0.6. This is because the computational cells
move with the pseudo-particles and for large h, can become severely deformed. If
we reduce h, say h = 0.7, the code can run longer until £ = 1.7. This shows that
smaller h can delay the severe cell deformation, but cannot remove it. With the
grid- angle preserving method, which keeps the grid regular, the code can run for
a long time (we have computed to ¢ = 10) without any indication of severe grid
deformation. Figs 15a to 15c¢ give the grids at t = 0.75 for different cases. We
see that irregular grids prevail when £ is constant and a regular grid prevails when
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h satisfies the grid-angle preserving property. Figs 16a and 16b give computed
pressure and Mach contours at different times up to £ = 2.5. They display clearly
the flow evolution process. Fig. 17 compares pressure and Mach number contours
at £ = 3,5 and 10. We see that as time increases pressure tends to a uniform
distribution while Mach number diminishes, reflecting the process of convertion of
kinetic energy to heat, as expected.

9. CONCLUSIONS

A unified coordinate system has been developed to describe fluid motion in which
the flow variables are considered as functions of time and of some permanent iden-
tification of pseudo-particles which move with velocity hq,q being velocity of
fluid particles. It includes the Eulerian coordinates as a special case when h = 0
and the Lagrangian when h = 1.

Systematical comparisons show that with increasing h from A = 0 to h = 1,
slip line resolution improves while grid deformation gets worse. It has been shown
that for two-dimensional flow the choice of h to preserve grid angles results in
a coordinate system which keeps the grid regular, thus avoiding the severe grid
deformation in the Lagrangian coordinates, yet it retains sharp resolution of slip
lines, especially for steady flow. It is, therefore, superior to both the Lagrangian
and the Eulerian coordinates.

Extension to three-dimensional flow is being carried out. On the other hand,
for one-dimensional flow the Lagrangian system of coordinates (h = 1) is shown
[21] to be the best in slip line resolution. It can also be used to incorporate a
shock-adaptive Godunov scheme to produce infinite shock resolution as well.

However, for two- and three-dimensional unsteady flow the system of Euler equa-
tions of gasdynamics written in Lagrangian coordinates is only weakly hyperbolic,
lacking a complete set of eigenvectors, with all its possible negative consequences
in numerical computation.
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APPENDIX A

Conventional Lagrangian Equations of Motion
For An Inviscid Perfect Gas

In this Appendix we re-write the conventional Lagrangian equations of motion

for an inviscid perfect gas in conservation form and show that they are just a

special case of system (8) or (12) when h = 1. We consider the unsteady two-

dimensional smooth flow of an inviscid perfect gas obeying the vy-law. The three-

dimensional case can be treated similarly. The conventional Lagrangian coordinates

(@, b) are the cartesian coordinates (x,y) of fluid particles at initial time ¢ = 0, i.e.
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(a,0) = (=, y)| .o~ The continuity equation, the momentum equations and the

energy equation are, respectively

ox,y)
1Y a(a7 b) = Po (0’7 b) (Al)
x 16p
2 + ;a—x = (A2)
Oy  10p
ZJ o A
dln ;.% A
ET (44)

where p, p are pressure and density of the gas. Equation (A4) states the entropy is
constant following a fluid particle, which is true for smooth flow.
The pressure gradient terms in (Az) and (A3) in the xy space can be eliminated

to yield

Proxr Pydy 10p
2 0a 92 0a | pda
OPxoxr Pydy 10p
2o oz ab | poh

0 (As)

0. (Ag)

Furthermore, in order to render this system of second order non-linear partial differ-
ential equations a system of first order quasillinear ones we introduce new dependent
variables u,v, A, B, L, M through the following equations

Ox

o U= (A7)

%y

Frim 0 (As)

Ox

a0 A=0 (Ao)

0

e~ B=0 (410)

Ox

b L=0 (A1)

0

5 M =0 (412)
Then after taking —, (A7) becomes

O(pA

(gt Lo (A13)

where

N=AM — BL
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and (Ag) — (Ai12) become

0A Ou

% o0 " (A1)
Furthermore, (A5) and (Ag) become
p(AZ + BOY) 1 22 =0
p (L2 M2y + 22 =0

which may also be written as

d(pAu) ) dp
et MEE— B2 =0
A pAv) 9 op _
Aestl L2+ AL =0

By use of (Ag - Ajs), the last two equations are equivalent to

d(pAu) N a(pM) O(pB)

ot o0 oy Y (A1)
dpLv)  O(pL)  O(pA)
o o0 e ° (410)

Evidently, equation (A7) and (Ag) are decoupled from (Aj3) to (Ajg) and (Ay).
The 8 equations (Ag) to (Ajs) and (A4) form a closed system and can be shown
(see below) to be just a special case of Eq. (12) with h = 1. After this system is
solved for (p,p,u,v, A, B, L, M), the functions x(a, b,t) and y(a,b,t) can be found
from (A7) and (Ag). This process is the same as the transformation (18) together

with
oL 0A
(5 - %lo“ (420)
oM 0B
- = — A
(6@ 6b>t0 0 ( 21)

which are easily ensured computationally.

To show that the system of equations (A;3) to (A1g) and (Ay4) is equivalent to
(12) with h = 1, we first identify A with ¢,& with @, and 1 with b. Then (A;3) is
the first equation of (12), and (Ay4) to (A7) are the same as the last 4 equations
of (12). Furthermore, (A1) and (Ajg) are the same as the 2nd and 3rd equation
of (12). We now show that the 4th equation of (12), i.e. the energy equation

dpLse)
ot

2 p(uM — L)) + 2 {p(Av — Bu)] = 0 (A
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is equivalent to (A4) as follows. Thus (Ags) —ux (A1g) —vx (Aqg) yields

pAN O (p ou ov ou ov
0=———|= M— —pL— —pB— + pA—
y—10t <p>Jr oa "oa P 6b+p Ob

pA 0 (p oN
oy —10t <p>+p6t’ (Azs)

after making use of (A14) to (A17). Using (Ay3), equation (As3) becomes

%m /% —0 (Agy)
which is the same as (Ay).

In conclusion, (a) the system of conventional Lagrangian equations of motion (A
— A,), i.e. the system of Euler equations in conventional Lagrangian coordinates, is
re-written in conservation form (A3 — Ay7, Ays, Ao, Agy), (b) it is just a special
case of Eq. (12) with h =1 and, (c) it is thus weakly hyperbolic.

The special choice of (¢,b) = (x,¥y);—¢ corresponds to choosing A = M =1 and
B = L = 0. Such a choice of coordinates, however, offers no advantage in com-
putation. For instance, if the fluid initially occupies a domain that is complicated
geometrically, the domain in the computational ab plane is the same complicated
domain. But with a suitable choice of the Lagrangian coordinates (&,7), one can
simplify the computational domain in the £n plane to a rectangular domain.



